Journal of Biomolecular Structure &
Dynamics, ISSN 0739-1102

Volume 5. Issue Number 3. (1997)
©Adenine Press (1997)

Calliper Randomization: An Artificial Neural Network
Based Analysis of E. coli Ribosome Binding Sites

http://www.albany.edu/chemistry/sarma/jbsd.html
Abstract

An artificial neural network based approach has been used in analyzing the translation initi-
ation region of E. coli. The approach is based on using a trained network capable of recog-
nizing a particular region and presenting the network with randomized calliper inputs of the
true sequence. The network responds with an error when the regions which have been the
main source of knowledge are randomized. Analysis of the E. coli ribosome binding sites
using this approach reveal that the initiation codon and the Shine/Dalgarno sequence which
are known to be important for translation initiation are also important in imparting knowl-
edge to the network. Further, selectively changing the usually occurring initiation codon
AUG, to GUG, UUG and AUU, which occur less frequently, decreases the network perfor-
mance in accordance with the frequency of their occurrence. This approach can be used as
a general method to derive consensus.

Introduction

Macromolecular binding to specific sites of DNA/RNA involves the recognition of
a specific sequence pattern. This sequence pattern recognition is seen in almost all
macromolecular binding processes (repressors, polymerases, ribosomes, etc.). In
some cases the sequence pattern may be very distinct while in others the sequence
pattern may be diffuse. In studying molecular binding sites in DNA or RNA it is a
conventional practice to derive a consensus by aligning an ensemble of sequences
recognized by a common macromolecule. It is most often found that the sequence
pattern is never completely conserved. In the case of E. coli translation initiation
codons, the first position has 95% A, 5%G, 1%U and 0%C. (1). Initiation of pro-
tein biosynthesis plays a major role in the process of gene expression. The initia-
tion process requires the formation of a complex between a ribosome, an mRNA
and an aminoacylated initiator tRNA. The site of formation of this complex on
mRNA s protected against nuclease attack and is known as the ribosome bind-
ing site (RBS). This region which usually extends about 35-40 nucleotides has the
initiation codon located at about two-thirds of this region. Most of them contain
the AUG triplet as the initiation codon. Others contain GUG or UUG, with a very
few having AUA and AUU as their initiation codons (2-5). Gold et al., (4) and
Stormo et al., (6) have compressed the histogram representing the frequency of
occurrence of cach base at each position into a single curve using a X2 function.
Schneider et al., (1) have evaluated the information content of sites recognized by
a particular macromolecule. Sequence logos have also been used in representing
consensus for these regions (7). Perceptron algorithms have been employed to dis-
tinguish translation initiation sites in E.coli (8). Bisant and Maizal have developed
a neural network model using a new set of ribosome binding sites (9).

Another important feature of the RBSs is a polypurine sequence called the Shine-
Dalgarno (SD) sequence. occurring 5 to the initiation codon and is complementary
to nucleotides at the 3" end of 16S rRNA (10). A few RBSs that do not seem to har-
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Figure 1: Architecture of a three layered feed for-
ward neural network used in the simulation. The cir-
cles represent the artificial neurons which integrate
input from the preceding layer and propagate the sig-
nal to the next layer.

bor SD sequence have also been reported (11,12). While rigorous statistical analy-
sis of ribosome binding sites has not resulted in an exact consensus, many impor-
tant features in the process of recognition have come forth. Recognition of binding
sites based on  primary sequence data is difficult since many positions in a con-
sensus sequence of the site are degenerate and there are multiple determinants that
define them (13).

The present study uses a neural network based approach in deriving the sequences
that are important in the process of recognition by a trained network by employing
a calliper randomization approach. Neural networks which are mathematical
approximations of a biological synapse were initially developed to simulate the
brain’s learning process (14, 15). This massively parallel computational device has
since been exploited in recognizing patterns rather than in understanding brain
function per se. The application of neural networks in solving computational prob-
lems in biology and in other ficlds exceeds its biological significance (16-19). The
calliper randomization approach detailed here is based on the assumption that the
sequences important in the process of recognition by a neural net are also biologi-
cally important. This approach has been used in the analysis of the RBSs and the
results are suggestive of the fact that the approach can be used as a general method
in deriving consensus.

Materials and Methods
Data

The data for training the network were taken from the compilation by Rudd and
Schneider (20). Out of the total of 1055 translation initiation sequences (of length
40). 500 sequences were used for training the network. The remaining 555
sequences were used as a test data set. A pseudo-random number gencrator was
used in constructing random sequences with equal composition of all the four
nucleotides. The random sequences were combined with the translation initiation
sequences in a ratio of 1:4. Thus the total learning space comprised of 2000 differ-
ent patterns. These sequences were presented to the network by coding them in
binary similar to that used by Demeler and Zhou (21), called the CODE-4 repre-
sentation. (C=0001; T=1000: A=0100; G=0010). The target to each translation ini-
tiation sequence was coded as 1 and O for a random sequence.
Y
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Neural Network Simulation and Calliper Randomization Approach

The neural network simulations were done on a Silicon Graphics Indigo? worksta-
tion and programs used were written in FORTRAN. A multi-layered feed-forward
type neural network was used for the simulation. The architecture of the network
used is shown in Figure 1. The network consists of three layers of artificial neu-
rons: input, hidden and output. Each neuron in one layer is connected to every other
neuron in the following layer. These connections are represented by weights and
thresholds. Training a feed-forward network involves presenting the network with
an input pattern, calculating the network output by propagating the pattern through
the network architecture. comparing the network output to the desired output or tar-
get. and using this difference (o alter the weights in the direction which minimizes
the difference between the actual output (network calculated) and the desired out-
put (target). The algorithm used for training is the method of error back-propaga-
tion (EBP). This approach involves two passes through the network, a forward pass
and a reverse pass. The forward pass is the least computation intensive and gener-
ates the network output. The reverse pass on the other hand is computationally very
time consuming, since it not only involves propagating the error through the net-
work but also assigns errors to each neuron that contributed to the initial error. The
objective function that the EBP algorithm attempts to minimize, namely the
summed squarcd error 1s defined as tollows

E= ZE ;- ouy;)’ (1]

where the index i ranges over the set of input patterns and j ranges over the set of
output neurons. t; is the target and out; is the network calculated output of the j®
neuron in the output layer when the ith pattern is presented. A detailed description
of the algorithm can be found in several articles (e.g. (14-16. 18)).

The calliper randomization approach involves randomizing a fixed window of
sequence and presenting this sequence to the trained network. The calliper window
is moved from one end of the sequence to the other, and the calliper randomized
sequences are presented to the network for prediction. The error values for each
window position is computed for the entire set of sequences.

Results and Discussion

A ncural network has been trained (o capture the internal representations of the
translation initiation region. The network architecture consisted of 160 neurons
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Figure 2: Error profile of the training and test data set.
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Figure 3: Performance of the network when a fixed
calliper of sequence is randomized. The peaks corre-
spond to the regions encompassing the initiation
codon and the Shine/Dalgarmno sequence.

tsequence length x 4) in the input layer. a hidden layer with 6 neurons and an out-
put layer with 1 neuron. The number of neurons in the input and the output layers
are fixed by the problem under consideration. while the neurons in the hidden layer
are varied 5o as to obtain a generalized network with maximum prediction capabil-
ity. Optimal predictions were obtained by using 6 neurons in the hidden layer.
Increasing the number of neurons in the hidden layer. however did not increase the
prediction capability of the network. Using too many neurons in the hidden layer
would resultin over parametrization. and would result in a network that memorizes
the patterns. having poor generalization capabilities. Decreasing the number of
neurons in the hidden layer hampered the prediction capability of the network. The
momentum term was optimized to 0.9 and was fixed throughout the training
process while the learning rate was decreased during the process of training to
obtain optimal prediction capability and to prevent the network from getting stuck
in any local minima. During the process of training the network was presented with
a total of 2000 different patterns consisting of 500 translation initiation sites and
1500 random sequences. After every training epoch. which corresponds to propa-
gating all the 2000 patterns once through the network architecture. the weights
were extracted and used for determining the performance of the network. This was
achieved by using these weights to predict the outcomes of the network when it was
presented with a test data set. consisting of 555 translation initiation sites combined
with 1110 random sequences. These sequences were not presented to the network
during the process of training. A network output between 0.5 and 1 for a pattern
suggested that the pattern is a translation initiation site. while an output less than
0.5 corresponded to a random sequence. Cross validating the network during the
process of training, helps in capturing the weights of the network with maximum
generalization capability. The error profiles of the training and the test data set are
shown in Figure 2. The weights corresponding to the minimum error for the test
data set werce taken as optimal and used for the calliper randomization approach.
The network predicted the test patterns with a very good degree of accuracy (96% )
and there were no false positives. Further. another set of 4000 random secquences
presented to the net were correctly predicted as random.

A trained network so obtained is a model-free tool with the capability of distin-
guishing a random sequence from a ribosome binding site sequence. While the
trained network is able to distinguish a completely random sequence from a non-
random sequences. would it be able to recognize partially randomized sequences?
If'the network acquires the knowledge to distinguish a random sequence from a non
random sequence from a few sequences at particular positions. then randomizing
these sequences should transform them into a random sequence. Further. if the
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sequences that impart knowledge to the network are ones that are biologically 615
important. then randomizing these sequences would result in an approach to derive
functionally and biologically important sequences. This is the basis of the calliper
randomization approach. To test this assumption the trained network was present-
ed with the ribosome binding site sequences that were randomized at fixed cal-
liper lengths. The results of the network predictions for these partially randomized
sequences are shown in Figure 3. The results are indicative of the fact that the net-
work looses its prediction capability, when regions around the initiation codons are
randomized. The calliper also encompasses the region preceding the initiation
codon. which is a short polypurine stretch known as the “Shine-Dalgarno™ (SD)
sequence. The SD sequence is known to base pairs with the 3" end of 16-S rRNA
during initiation site selection. Further, the network was also presented with RBS
sequences wherein each of the positions was substituted with all four nucleotides.
The results of the network prediction are shown in Figure 4. In all the cases the net-
work looses its prediction capability when the nucleotides of the initiation codon
are changed. Thus making the initiation codon the most important in the process of
recognition. Earlier reports on mutations that destroy the initiation codon, as scen
in the case of bacteriophage T7 0.3 genc (22). the E. coli trp leader peptide (23},
the bacteriophage T4 rlIB gene (24, 25), the lambda xis gene (26, 27) and the
Salmonella typhimurium his leader peptide (28) have been shown to greatly reducce
or abolish translation from the affected cistron. It is noteworthy to mention that
randomizing a large portion of the region preceding the initiation codon did in fact
causc a loss in the prediction capability of the network. However, mono-nuclcotide
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substitution at these positions did not cause a significant loss in the recognition sig- Figure 4: Performance of the network as a result of
nal. These results point to the fact that the signals harbored in the Shine and mono-nucleotide substitution at cach position
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Figure 5: Performance of the network when differ-
ent inittation codons were substituted in place of the
naturally occurring ones.
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Dalgarno region are not completely lost by the substitution of a single nucleotide.
Itis further interesting to note that when the network was presented with sequences
wherein the initiation codon was changed to the less frequently used ones. the net-
work prediction decreased in accordance with the frequency of codon used. The
network prediction for the different codon substitutions are given in Figure 5. The
prediction capability of the network further increased when alt the initiation codons
were changed AUG (97 %).

These results verify the assumption that the network acquires knowledge trom
regions that are biologically and functionally important. This approach has an
advantage over the other approaches in deriving consensus. The network is not
biased towards any specific region of the sequence presented to it. It learns from
the weighted sums of all the features to distinguish between the more important
ones and less important ones. Further, this method can be exploited in deriving con-
sensus for other biologically important regions for which weak conservation in
sequence is observed.

Acknowledgments
The author thanks Prof. Thomas Schneider for useful discussions.

References and Footnotes

1. Schneider. T.D.. Stormo. G.D.. Gold. L., and Ehrenfeucht, A.. J. Mol Biol 188, 415-
431(1986).
. Gold. L. Ann. Rev. Biochem. 57. 199-233 (1988).
- De Smit. M.H. and van Duin. J.. Progress in Nucl. Acid Res and Mol Biol. 38. 1-35 (1990,
- Gold, L., Pribnow. D.. Schneider. T., Shinedling, S.. Singer. B. S. and Stormo. G. Ann. Rev
Microbiol. 35, 365-403 (1981).
- "The Ribosome: Structure. function and evolution™ (ed: Hill. W.E., Dahlberg. ~ A . Garrett.
R.A. Moore, PB., Schlessinger. D., and Warner, J.R.)
6. Stormo. G.D.. Schneider, T. D. and Gold, L. M., Nucl. Acids Res. 10, 2971-2996 (19821,
. Schneider, T.D. and Stephens, R M.. Nucl Acids Res. 18, 6097-6100 (1994).
8. Stormo, G.D.. Schneider, T.D.. Gold. L.M. and Ehrenfeucht. A .. Nucl. Acids Res. 10. 2997
3011(1982).
9. Bisant, D. and Maizel, . Nucl Acids Res., 23, 1632-1639 (1995)
10. Shine. .. Dalgarno. L.. Proc. Narl. Acad. Sci USA 71, 1344-1346 (1974)
L1, Waltz. A._ Pirotta, V., and Incichen. K.. Nature 262, 665-669(1976).
12. Van Gemen. B.. Koetes, HJ.. Plooy. C. A. M., Bodlacnda. J. and Van Knippenberg, PH .
Biochimie 69, 841-848 (1987).
13 Trifonov. EN., CABIOS 12, 423-429 (1995).
14, Rumelhart. D.E.. Hinton, G.E. and Williams, R.J. Narure 323. 533-536 (19861

N o0t

~J



16

17.
18.

19

20.

21

a7

23

24.

2§

Rumelhart, D E. and McCleltand. J.L. in : Parallel and Distributed Processing :Explorations
i the Microstructure of Cognitton. MIT Press, Cambridge, MA (1986).

Zupan, J. and Gasterger, J. An. Chem. Acta 248, 1-30 (199 1.

Nair, TM., Tambe, S.S. and Kulkarni. B.1> | FEBS. Lert 346, 273-277 (1994).

Zupan. J. and Gasterger. )., Angew. Chem. Int. Ed Engl 32, 503-527(1993).

Nair, TM., Tambe. S.S. and Kulkarni, B.D.. CABIOS {1, 293-300 (1995).

Rudd, K E. and Schneider. TD . in . A Short course in Bacterial Genetics - A Laboratory
Manual and Handbook for Escherichia coli and related bacteria. (Miller, J., Ed.) Cold Spring
Harbor Laboratory Press. Cold Spring Harbor. NY. Pp. 17.19-17.45(1992),

Demeler. B. and Zhou, G, Nucl Acids Res. 18, 1593-1599 (1991).

- Dunn. J. ). Buzash-Poliert. E., Studier. FW. Proc. Natl. Acad. Sci USA 75.2741-2745 (1978)

Zurawski, G.. Elseviers, Do, Stauffer, G. V. Yanotsky, C.. Proc. Nail. Acad. Sci. USA 75, 5988-
5992 (1978)

Belin. D, Epistein, R. H.. Virology 78, 537-553 (1977).

Belin, D.. Hedgpeth. J.. Selzer. G. B., Epistein. R H.. Proc. Natl. Acad. Sei USA 76, 700-704
(1979

Abrahani. J . Mascarenhas, D, Fischer, R.. Benedik, M., Campbell. A.. Echols. H., Proc. Natl
Acad. Sci. USA 77, 2477-2481 (19801

Hoess. R.H.. Foeller. C. Bidwell, K., Landy. A.. Proc. Natl. Acad. Sci. USA 77.2124-2128
L19R0).

Johnston. H. M. and Roth. 1. R/ Mol Biol. 145.735-756 (1981).

Date Received: August 5, 1997

Communicated by the Editor Rick Ornstein

617

Calliper Randomization




