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Abstract

Artificial neural networks (ANN) to predict terminator sequences, based on a feed-forward architecture and trained using the error back
propagation technique, have been developed. The network uses two different methods for coding nucleotide sequences. In one the nucleotide bases
are coded in binary while the other uses the electron—ion interaction potential values (EIIP) of the nucleotide bases. The latter strategy is new, property
based and substantially reduces the network size. The prediction capacity of the artificial neural network using both coding strategies is more than

95%.
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1. Introduction

Terminators are sequences which primarily regulate
gene expression by providing stop signals at the end of
transcription units, and thus allow adjacent genes and/or
operons to be transcribed and regulated independently
[1]. To understand the control mechanism, it is impera-
tive to identify template codes involved in the site-spe-
cific recombination process. Not much information is
known about the DNA sequences of terminators. Earlier
studies [2,3] have shown that factor-independent termi-
nators shared features like G/C-rich dyad symmetry fol-
lowed by a stretch of 4-8 adjacent thymine residues im-
mediately upstream of the last nucleotide incorporated
into the RNA chain. It should also be noted that there
are many independent terminators that do not comply
with the consensus pattern of dyad symmetry and T-
stretch [3]. As a result, the conditions for termination are
not well defined. Therefore, it has become important to
develop methods to identify terminators due to the in-
consistent consensus patterns that they contain. Essen-
tially, the task involves recognizing the hidden pattern in
the terminator region. Towards that goal, a modelling
approach known as the ‘artificial neural network’
(ANN), which possesses the ability to learn and general-
ize nonlinear functional relationship(s), can be exploited.

ANNSs have been used to solve a variety of problems
in biology and have been extensively reviewed [4]. The
paradigm was originally developed to simulate the
brain’s learning process by modelling its fundamental
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unit, i.e. the nerve cells and their interconnections. In
ANN, the nerve cells are replaced by computational
units called neurons, and the axons by symbolic connec-
tions. The synaptic strengths are represented by weights
and threshold (biases) which are applied to the connec-
tions and neurons, respectively. Network modelling in-
volves a training stage, during which a training set of
inputs and its corresponding targets are presented to the
neural net. The network, by a process of iterative learn-
ing, attempts to minimize an objective function (error
function), usually the difference between the network
computed output and the desired output. Learning or
training is said to be complete when the network satisfies
some convergence criteria. A converged or a trained net
has the ability to recognize and generalize the patterns
intrinsic to the training set, and this ability has been
exploited to recognize hidden patterns in the DNA and
protein sequence [4,5]. In this paper we present our re-
sults on the development of a multilayered feedforward
network using backpropagation algorithm [6] for termi-
nator prediction. We have also employed a novel coding
strategy.

2. Experimental

2.1. Data

The terminator sequences were taken from the compilation by Volker
Brendel et al. [7]. From a total of 128 terminators of length 51, 88 were
chosen for training the network. The remaining 40 terminators were
used as the test data set. A pseudo-random number generator was used
for constructing random sequences with equal composition of A, T, G
and C. These random sequences were combined with the terminator
sequences in the ratio 1:3 (one terminator followed by three random
sequences).

2.2. Data representation
The input data was coded using two different strategies. In one case
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the network was presented with data coded in binary, similar to that
used by Borries and Guangwen [8], called CODE-4 (0001 = C,
0010 = G, 0100 = A, 1000 = T). The target to each input sequence was
coded 1 for a terminator sequence and 0 for the random sequence. The
second type of coding is based on the informational spectra method
(ISM) [9-12], which is a mathematical and physical method for the
analysis of informational content of DNA and protein sequences
{13,14]. In this form of coding the electron-ion interaction potential
(EIIP) associated with each nucleotide is calculated using the following
equation:

W =0.252Z*Sin(1.0472Z*)/2x (h
where Z* is the quasi valence number and is determined as:

Z* =3 nZIN @)
where

Z, = valence number of the /" atomic component, #, = number of atoms
of the /™ component, m = number of atomic components in the mole-
cule, and N = total number of atoms.

The EIIP values for the nucleotides obtained using Eqns. | and 2 are:
A, 0.1260; T, 0.1335; G, 0.0806; and C, 0.1340. Thus, each nucleotide,
irrespective of its position, is represented by a definite number, and the
numerical series so obtained are finite length deterministic discrete
signals. The normalized signals are presented to the neural net as the
input data. The targets are represented in an analogous manner to
CODE-4. This representation will henceforth be referred to as EIIP
code.

2.3. Back propagation network simulation

All the computations were performed on a 386 AT model equipped
with a math co-processor. A network training programme in FOR-
TRAN was developed and featured a multilayered feed-forward type
network (Fig. 1). These networks contain one or more layers of neu-
rons, called hidden layers, between the output and the network’s input.
The output of each neuron is the weighted sum of its inputs passed
through a non-linear activation function. The networks learn by mod-
ifying the strength of the interconnections (the weights) between neu-
rons, according to some specified rule called the ‘learning algorithm’.
We have used the most popular network training algorithm, ‘back
propagation’ (BP) [6], which attempts to minimize the error function,
namely, the summed squared error, and is defined by:

E=ZE, =% ¥ (t,—outnet,)’ 3)
b4 ri

where the index p ranges over the set of input patterns, / ranges over
the set of output units, E, represents the error on pattern p, 1, 1s the
target, and outnet,, is the actual output of the ith output unit when
pattern p has been presented. When the summed squared error falls
below the prescribed threshold, the network is said to be trained and
the converged weights can be used for predicting the outcomes of the
test data. A detailed description of the BP algorithm can be found in
several references (e.g. [6,15-17)).

Further we have tried to pinpoint that region in the terminator which
is crucial for recognition by the network. This was done by randomizing
a calliper of 10 bases (one turn of the helix) and moving the calliper
from one end of the sequence to the other and presenting these se-
quences to the net for prediction.

3. Results and discussion

We have trained two separate neural nets using the
above-mentioned coding strategies. In one case we coded
the nucleotide bases as per CODE-4. Since this method
did not reflect any intrinsic property of the bases, we
have also used the EIIP coding strategy which reflects a
physical property of the system under study. The infor-
mational spectra method [11], which uses the EIIP val-
ues, 1s a tool for the analysis of the informational content
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Fig. 1. General architecture of error back propagation neural network.

of proteins and nucleotide sequences [12,13] and has also
been used to obtain consensus spectra for different se-
quences [14]. It aims to establish a relationship between
a sequence and its biological activity. Biological proc-
esses that take place in nature are highly specific and
result from the selective interactions between macromol-
ecules. These interactions are based on an efficient recog-
nition which takes place over a relatively larger separa-
tion. The basis of molecular recognition has been
attributed to the electric forces determined by the electro-
static potential around a molecule [18]. The electrostatic
potential depends upon the distribution and the energy
state of the valence electrons. EIIP values are the physi-
cal parameters that influence the delocalized electrons.
Earlier studies have established a correlation between
EIIP values of organic molecules and their biological
activity [19-21]. This suggests that some of the informa-
tion responsible for the biological activity of DNA and
protein sequences may be encoded in their primary struc-
ture in terms of the distribution of EIIP values of consti-
tutive elements (in our case nucleotides). Hence, the
network was presented with a numerical series of EIIP
values which are finite length deterministic discrete sig-
nals corresponding to the terminator sequence.

The network architecture for CODE-4 representation
consisted of 204 (sequence length x 4) neurons in the
input layer, a single hidden layer with 7 neurons, and an
output layer with I neuron. The network architecture for
the sequences coded with their EITP values consisted of
an input layer with 51 neurons, a single hidden layer with
7 neurons, and an output layer with 1 neuron. The num-
ber of neurons in the hidden layer was fixed to 7 by trying
different combinations of neurons. The optimal predic-
tion capability was obtained with 7 neurons in the hidden
layer. However, using 8 neurons or more did not increase
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Fig. 2. Error profiles of the training and test data set using CODE-4

the prediction capability of the net, whilst less than
7 neurons in the hidden layer hampered the prediction
capability of the net. The momentum term o was opti-
mized to 0.6 and the learning rate to 0.2. The net was
presented with 352 patterns consisting of 88 terminators
and 264 random sequences for training. After every
epoch, which corresponds to the presentation of all the

352 training patterns once to the net, the weights were
extracted and used for predicting the test data set of 160
patterns (40 terminators and 120 random sequences). A
network output lying between 0.5 and | indicates that the
input pattern is a terminator, and an output of less than
0.5 corresponds to a random sequence. Extracting the
weights after every epoch and using them for predicting
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Fig. 3. Error profiles of the training and test data set using the EIIP code
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Fig. 4. Error profile of the sequences when randomised at different regions.

the outcomes of the test data is known as cross valida-
tion, and tests the generalization capability of the net-
work. The weights corresponding to the minimum error
for the test data set were taken as the optimal weights.

The results of the prediction for the test set with opti-
mal weights show that out of the 160 test patterns, 157
(98.125%) patterns were correctly predicted with CODE-
4 and 153 (95.625%) patterns were predicted by EIIP
code. It should also be noted that neither of the coding
strategies predicted false positives, i.e. none of the ran-
dom sequences were predicted as terminators. Further-
more, a network was trained by coding the four nucleo-
tides by arbitrary, properly spaced numbers (A, 0.25; T,
0.50; G, 0.75; and C,1.0). The network architecture for
this net was the same as used earlier (viz. 51 input neu-
rons, 7 hidden neurons and 1 output neuron). The net-
work prediction using this arbitrary coding strategy was
much more inferior as compared to EIIP code and
CODE-4 (only 147 patterns out of 160 were predicted
correctly). The net also took a longer time to converge
(>1,500 epochs).

Figs. 2 and 3 show the error profiles of the training
and test data when CODE-4 and the EIIP code, respec-
tively, were used. It can be observed that the network
attains the best prediction capability in 273 epochs with
the EIIP code. Prolonged training with the EIIP code did
not increase the prediction capability any further; instead
the network lost its generalization capability and started
memorizing the training patterns. With CODE-4 the
error profiles show a continuous decrease. However,
prolonged training did not increase the prediction capa-

bility of the network, and, therefore, the weights at the
end of 200 iterations are considered to be optimal. The
marginally lower prediction capability of the EIIP code
could be attributed to the smaller network size, which
means less parameter space as compared to CODE-4.
However, coding sequences by their EIIP values has the
advantages that it reduces the network size to one-fourth
as compared to CODE-4 and also involves less training
time. The optimal weights and the programme to simu-
late the network may be obtained from the authors on
request by E-mail.

The analysis of the terminators, wherein a region of
sequences of fixed length (10 bps) was randomized, re-
vealed that the sequences between 30 and 51 were the
most important in the recognition process. Fig. 4 shows
the error profile of the network when different regions
in the sequence were randomized. It is noteworthy that
the region corresponding to the maximum error also
corresponds to the region in the sequence which contains
the dyad symmetry and T-run, which are the well-known
features of the terminators.

Our results also corroborate the fact that functionally
related sequences have some common information hid-
den in them. This hidden information may be extracted
by analyzing the finite length deterministic discrete sig-
nals by presenting them to a network.

To conclude, the results presented here suggest that
ANN can be successfully employed for terminator pre-
diction. It is also shown that in addition to the commonly
used CODE-4, an alternative approach, in the form of
the EIIP code for representing nucleotide bases, can be
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exploited. This approach has the advantage that it re-
duces the network size and training time significantly.
We would like to suggest here that this coding strategy
could be employed directly or indirectly as one of the
sensor algorithms in the coding recognition module
(CRM) [22-24] used for analyzing coding and non-cod-
ing regions in DNA sequences. Furthermore, the calliper
randomization strategy used here can be exploited as an
alternative method to localize the consensus of a se-
quence responsible for a particular biological activity.
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