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Abstract

DNA arrays have become the immediate choice in the analysis of large-scale expression measurements. Understanding the expression pattern
of genes provide functional information on newly identified genes by computational approaches. Gene expression pattern is an indicator of the
state of the cell, and abnormal cellular states can be inferred by comparing expression profiles. Since co-regulated genes, and genes involved
in a particular pathway, tend to show similar expression patterns, clustering expression patterns has become the natural method of choice to
differentiate groups. However, most methods based on cluster analysis suffer from the usual problems (i) dead units, and (ii) the problem of
determining the correct number of clusters (k) needed to classify the data. Selecting thek has been an open problem of pattern recognition
and statistics for decades. Since clustering reveals similar patterns present in the data, fixing this number strongly influences the quality of the
result. While there is no theoretical solution to this problem, the number of clusters can be decided by a heuristic clustering algorithm called
rival penalized competitive learning (RPCL). We present a novel implementation of RPCL that transforms the correct number of clusters
problem to the tractable problem of clustering based on the degree of similarity. This is biologically significant since our implementation
clusters functionally co-regulated genes and genes that present similar patterns of expression. This new approach reveals potential genes that
are co-involved in a biological process. This implementation of the RPCL algorithm is useful in differentiating groups involved in concerted
functional regulation and helps to progressively home into patterns, which are closely similar.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The development of large-scale genome sequencing and
high throughput microarray technology have made possible
the simultaneous temporal assay of thousands of genes ex-
pressed under different conditions (drug treatment, environ-
ment) (Thieffry, 1999; Bowtell, 1999; Lipshutz et al., 1999;
Lockhart et al., 1996). The result of an array assay under a
single condition comprises thousands of data points. With
a minimum of two conditions needed for comparison, it is
easy to see how the data can grow uncontrollably when
multiple conditions and/or time points are involved (Tusher
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et al., 2001). Most functional approaches suggest that genes
with similar expression patterns play concerted roles, such
as being involved in the same pathway (DeRisi et al., 1997;
DeRisi and Iyer, 1999). Thus, grouping genes with similar
expression levels is useful towards understanding their func-
tional significance (Granjeaud et al., 1999).

The grouping of genes with similar expression levels at
different time points is the mathematical equivalent of clus-
tering a set of points inn dimensions. Of the clustering
methods, agglomerative hierarchical clustering has been the
most widely used method in array data analysis (Eisen et al.,
1998; Spellman et al., 1998; Takahashi et al., 2001). How-
ever, despite the frequent use of hierarchical clustering (Jain
and Dubes, 1988; Kaufman and Rousseeuw, 1990; Han and
Kamber, 2001), this method has a number of shortcomings.
For instance, its strict sense of hierarchical descent, which
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is very well suited for the evolution of species is not as well
suited for the complex expression groups found in microar-
ray data. The problem is further exacerbated because the
massive amount of microarray data is not efficiently handled
by hierarchical clustering methods in terms of compute time
or the algorithm. The algorithm involves the computation of
a distance or similarity matrix, which has an O(N2) com-
plexity. Hierarchical clustering has also been noted to have
complications with robustness, non-uniqueness, and inver-
sions resulting in difficulty in interpreting the true hierarchy
(Morgan and Ray, 1995). Further, the deterministic nature
of this method causes data points to be clustered locally,
wherein, once a data point is assigned to a cluster, it cannot
be re-evaluated to be in another cluster.

These shortcomings have lead many groups to focus
on machine learning methods to cluster microarray data
(Tamayo et al., 1999; Sultan et al., 2002; Takahashi et al.,
2001). Unsupervised learning methods like Kohonen’s
self-organizing map (SOM) (Kohonen, 1982, 1990) have
the robustness to handle the complex groups and the large
amounts of noise associated with microarray data. SOMs
are a more desirable choice for microarray data due to their
efficiency and speed over hierarchical clustering as well as
their ability to deal with outliers and non-parametric distri-
butions. Toronen et al. showed the feasibility and sensitivity
of using SOMs in analyzing and visualizing microarray data
(Toronen et al., 1999). SOMs have also been successfully
implemented in a diverse range of microarray experiments
such as in detecting yeast cell cycle periodicity (Tamayo
et al., 1999) and in time course studies of LPS-induced ex-
pression of genitourinary inflammation (Saban et al., 2001).

Even with the many positive features of SOM with re-
spect to its use in microarray data analysis, one of the major
drawbacks of SOM is the need for a pre-determined grid of
nodes before running the algorithm. Most groups have tried
to circumvent this problem with trial and error. Furthermore,
SOMs and other conventional clustering algorithms like the
k-means clustering technique which also suffers from the
inability to automatically select the optimal number of clus-
ters, also suffers from the dead unit or stuck vector problem.
A dead unit is defined as a node or center that never finds any
input vector close to it. This mainly stems from the fact that
the centers are improperly initialized. Thus, in such a case,
there exist a centerwc, which does not represent any input
vector and thus takes the status of a dead unit. This prob-
lem has been overcome, to a large extent, by employing the
strategy of a conscience factor (DeSieno, 1988). In this, the
winning rate of the frequently winning node is decreased,
thereby giving a chance to the non-winning units. Ahalt
et al., has used the conscience factor approach in the fre-
quency sensitive competitive learning (FSCL) method (Ahalt
et al., 1990). While the FSCL formalism solves the dead
unit problem, it still does not provide an approach for au-
tomatically selecting the optimal nodes required. However,
Xu et al., has proposed an unsupervised learning paradigm,
which during the process of learning, optimally determines

the number of nodes (Xu et al., 1993). This strategy known
as the rival penalized competitive learning (RPCL) is a mod-
ification of FSCL, and it automatically arrives at the optimal
number of nodes needed to represent the clusters in the input
space. The number of nodes needed to optimally cluster the
input space is arrived at by determining the number of nodes
as a function of the degree of similarity between nodes.

In our implementation of RPCL the degree of similarity
is embedded into a user-defined parameterτ. The novel ap-
proach that was used to embed the similarity condition in
τ is biologically relevant since the members of each cluster
will have to satisfy the similarity criterion, which is a re-
flection of the pattern of expression and may be associated
with a particular biological process. Further, in the origi-
nal implementation of RPCL, Xu et al. retained the unused
nodes in anticipation of new patterns. In contrast our im-
plementation prunes these unused nodes at the end of the
analysis. The performance of the algorithm was evaluated
using simulated data, microarray data from yeast cell cycle
studies and from kidney developmental stage specific gene
expression studies. The results show that RPCL is a robust
approach and can be used to reveal biologically relevant in-
formation. Further the results also point to the fact that the
algorithm is capable of differentiating closely similar pock-
ets of expression pattern.

2. Materials and methods

2.1. Simulated data

Datasets in a two dimensional space with predetermined
number of clusters were generated with variance 0.1 and
0.01, centered at (−1, 0), (1, 0), (0, 1), (0,−1) (Fig. 1).
Points were assigned to each center according to a Gaussian
distribution. Since the dataset was generated randomly, there
is an equal probability of picking points centered on any one
of the four centers. A total of 100 points were associated with
each center. The clusters in the dataset with variance of 0.01
are more distinct than the dataset with variance 0.1. These
would be referred to as tight and sparse clusters, respectively.

2.2. Yeast cell cycle data

Yeast cell cycle data was obtained fromhttp://www.
genomics.stanford.edu. Processing of the data was modeled
after Tamayo et al. The genes that did not show a two-fold
relative change or an absolute change of 35 were filtered
out and the expression levels were normalized within each
of the two cell cycles (Tamayo et al., 1999).

2.3. Kidney gene expression data

Gene expression studies during kidney development were
studied earlier byStuart et al. (2001). This dataset consists
of gene expression levels for 880 genes during different

http://www.genomics.stanford.edu
http://www.genomics.stanford.edu
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Fig. 1. Artificially generated dataset used to test the performance of the algorithm. The clusters are centered at (−1, 0), (0, 1), (1, 0) and (−1, 0).

stages of kidney development. The data was preprocessed
by normalizing it to a mean of 0 and a variance of 1, before
presenting it to the RPCL algorithm.

2.4. Rival penalized competitive learning algorithm

RPCL is an unsupervised learning strategy proposed by
Xu et al. (1993, reviewed inTambe et al., 1996), that au-
tomatically determines the optimal number of nodes. The
principle underlying RPCL is that for each input vector
not only is a winning node moved closer to adapt to the
input but also a rival (second winner) is moved away or
penalized. The rate at which the rival node is penalized is
much smaller than the learning rate. The steps involved in

the RPCL algorithm can be summarized as follows:

(i) For a given layer of nodes with outputski, determine
the winner and the rival node by randomly taking a
sample�x from the input spaceI. For eachi in I:

ki =




1 if i = c such thatγc||�x − �wc||2
= minj(γj||�x − �wj||2)

−1 if i = r such thatγr||�x − �wr||2
= minj �=c(γj||�x − �wj||2)

0 otherwise

(1)

where�wc is the weight vector, which wins the competi-
tion, �wr the weight vector of its rival, andγj is the con-
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science factor and is used to reduce the winning rate of
the frequent winners. It is so called because a process-
ing term that wins too often begins to “feel guilty” and
prevents itself from winning excessively. It is useful
to develop a set of equiprobable features or prototypes
representing the input data.γ is calculated as follows:

γj = nj∑k
i = 1ni

(2)

whereni refers to the cumulative number of times the
nodei has won the competition.

(ii) Update the weight vectorwi by

�wj(t + 1) = wj(t) + �wj (3)

Here,�wj is the magnitude by which thejth weight
is adjusted when thekth input vector is applied to the
network and is determined as follows:

�wj =




αc(�x − �wi(t)) if ki = 1

−αc(�x − �wi(t)) if ki = −1

0 otherwise

(4)

where 0 ≤ γc andγr ≤ 1 denotes the learning rates
for the nearest and next nearest center. The learning
rate decreases with each iteration whereαr(t) 	 αc(t)

must hold. The reduction was carried out following
Chen et al. (1992):

α(t) = α(t − 1)√
1 + int

[
t
m

] (5)

where, int[·] denotes the integer part of the argument.t
is the iteration number andm is the number of clusters.

(iii) Prune any centers that are within a specified threshold
τ of each other.

if || �wm − �wn||2 < τ, then sz =
∑

i

|| �wz − �xi||2

(6)

wherez is m or n and i includes all points found inm
andn. Then

ρ(�sz) =
{

1 if si < sj
0 otherwise

(7)

where ρ(�sz) denotes whether a node is pruned
(ρ(�sz) = 0) or is not pruned (ρ(�sz) = 1).

3. Results and discussion

Our implementation of the RPCL algorithm is a
topology-determining clustering algorithm. That is, it deter-
mines the number of clusters needed to classify the data into
biologically similar units. If the number of clusters at the
start of the simulation under-represents the topology of the
input space, the extra units needed are automatically gener-
ated and the points that are closer to these newly generated

units are classified appropriately. On the other hand, if there
are too many clusters at the start of the analysis, then the
unused clusters are pruned away. The RPCL algorithm has
been modified to converge on the correct number of clus-
ters based on a similarity criterion we introduced, defined
in τ, and to include a node-pruning step wherein any two
centers that are closer to each other inn-dimensional space
by some thresholdτ are assigned to a single cluster. This
criterion (τ) that defines a condition dictates the number of
cluster formed. The elimination of the center depends on
ρ(�sz). Centers are also pruned if they are driven away and
never assigned a point. In cases where the number of nodes
is greater than the number that is needed to represent the
input space, the-pruning step in the algorithm prunes the
extra and unused nodes converging to the optimal number
of nodes.

The performance of the algorithm was first tested on a set
of simulated data with known numbers of clusters.Fig. 1
represents the input space with four clusters. The tight clus-
ters (variance 0.01) are very distinct compared to the sparse
clusters (variance 0.1). Multiple simulations were performed
to determine the uniqueness of the convergence to a partic-
ular solution. The learning and penalizing rates were set to
0.05 and 0.002, respectively at the beginning of the simula-
tion and gradually reduced during the simulation following
Eq. (5). This helps in reducing fluctuations during learning.
The error profiles during training are given inFig. 2. The
profile clearly captures the decrease in the error as the num-
ber of clusters/nodes tends toward the optimal solution. The
profile also shows that once the optimal number of clusters
is reached, there is no further decrease in error. The results
of the simulation are summarized inTable 1. In all simu-
lations, the number of starting centers was assumed to be a
minimum of 2. Simulations were performed with varyingτ

until the algorithm failed to produce the correct number of
clusters.

In the case of the dataset with tight clusters, the RPCL
algorithm correctly determined the number of clusters with
a threshold of 0.5 while it produced nine clusters for the
dataset with sparse clusters. This is a result of the dataset
with a variance of 0.01 resulting in easily distinguishable
clusters, and therefore aτ of 0.5 was sufficient to differen-

Table 1
Performance of the RPCL algorithm on artificially generated data

Width Number of clusters obtained

0.01a 0.1a

0.5 4 9
1.0 4 4
1.2 4 4
1.3 4 4
1.4 4 3
1.45 3 –

a Variance.
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Fig. 2. Error profile for the simulations run on the artificially generated dataset with sparse clusters.k represents the number of nodes generated during
the simulation.

tiate the tightly packed cluster. Another point worth men-
tioning is the percentage of correctly classified points. In
the case of the tight clusters all the points were correctly
classified forτ between 0.5 and 1.4, giving a performance
of 100%. In the case of the sparse clusters, the classifica-
tion was never 100% accurate. This is due to the overlap of
points that are at the tail of the distribution.Fig. 3 depicts
the points that were misclassified.

The movement of the centers is shown inFig. 4(a). The
penalization of the centers become more apparent when
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Fig. 3. The points from the dataset with sparse clusters that were wrongly classified by the RPCL algorithm.

the number of starting centers is greater than the number
of actual centers needed. This is an important step in the
simulation as it helps in efficiently determining the optimal
centers for the similarity criterion defined inτ. The number
of nodes will be automatically selected by driving away any
extra units. Since these nodes are far away from the win-
ning centers they are never assigned any points, and empty
nodes are eventually pruned. The converged centers for the
dataset with sparse clusters are shown inFig. 4(b). The con-
vergence of the RCPL algorithm to a unique solution even
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Fig. 4. (a) Movement of the centers during the simulation.k represents the number of nodes. (b) Converged centers arrived at by RPCL at the end of
the simulation.

with different τ and varying numbers of starting clusters,
suggests the robustness of the approach and its poten-
tial application as a tool for analyzing gene expression
data.

Next, the RPCL algorithm was applied to publicly avail-
able gene expression data. Two sets of data were chosen. One
of the sets consists of expression data used to understand
the genome-wide transcriptional analysis of the mitotic cell
cycle in yeast (Cho et al., 1998). In this study, the fluctu-
ation of gene expression levels were analyzed as the cells
progressed through the cell cycle. The temporal changes in
gene expression make this a particularly attractive system
to understand genome-wide regulation of gene activity. Cho
et al., manually analyzed their expression data to understand
the genes involved in the different stages of cell cycle. For
each phase of the cell cycle, genes with similar expression
levels and patterns of expression were grouped together. This
dataset was chosen for two reasons. Firstly, as a test case for

evaluating the performance of the algorithm and secondly,
in the hope of extracting some as yet unknown and inter-
esting dynamics of gene expression as the cell progresses
through the different phases.

The algorithm assigns a gene to a particular cluster based
on its distance from the number of clusters involved at the
time of classification. The number of clusters involved de-
pends largely onτ which is specified at the beginning of
the analysis. This parameter can be viewed as the distance
that must be maintained between any two clusters. From a
biological senseτ is equivalent to the difference in expres-
sion levels that need to be differentiated. This feature of the
algorithm makes it particularly attractive as it allows for the
collapse of two clusters into one or the differentiation of an
already existing cluster into one or more clusters. Thus,τ

helps to either differentiate gene expression patterns with
fine differences or to integrate them as one based on their
expression level.
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Table 2
Number of clusters obtained for the yeast expression data

Width Yeast clusters obtained

2.5 5
2.0 12± 3
1.5 24± 4
1.0 43± 4

Results of simulations on the yeast expression data are
given in Table 2. The results reveal that the numbers of
clusters are inversely proportional toτ. A smaller value
of τ results in the separation of more similar expression
patterns while a largerτ value collapses two clusters and
consequently decreases the number of clusters.

Genes associated with each cluster were compared with
the manual analysis performed by Cho et al. The assignment
of genes to the clusters as they get differentiated depending
on the value ofτ revealed a phenomenon of close functional
association with the genes within the differentiated nodes.
Analysis of the differentiation of the gene-cluster associa-
tion for the genes involved in the S-phase of the cell cycle
by Cho et al., is indicative of this fact. One set of RPCL
simulations on the yeast cell cycle data withτ = 2 and
τ = 1 converged to a total of 10 and 47 clusters respec-
tively. Analyzing the gene-cluster association for the genes
involved in the S-phase of the cell cycle revealed that the
algorithm was able to differentiate them into finer function-
ally distinct clusters. RPCL distributed these genes into 5
and 11 nodes forτ of 2 and 1, respectively. Lowering the
value ofτ from 2 to 1 permitted the separation of genes in-
volved in chromatin organization, cell wall organization and
axial budding. Cho et al., manually assigned these genes to
the same node while RPCL assigned these genes to differ-
ent nodes. While these process occurs during the S-phase of
the cell cycle, differentiating them into separate groups help
in better understanding the finer differences in expression
levels. Similarly, genes that were clustered by Cho et al., to
be in the late G1 phase and the M-phase were also differ-
entiated into smaller and more distinct groups of clusters.
The differentiation of one of these clusters into seven indi-
vidual clusters, as the value ofτ decreased from 1.5 to 1,
is shown inFig. 5. It is evident from the similar expres-
sion patterns of clusters 9, 10 and 40 that they all originated
from a single cluster. Furthermore, two other nodes, viz.
5 and 25, also have genes that were once part of a larger
node. There were two other genes that were part of the
large node that got assigned to two different nodes upon dif-
ferentiation. Similar trends were obtained with subsequent
runs.

The similarity of the expression patterns within a cluster is
very apparent, and justifies the fact as to why they were once
part of a single cluster or node. Analysis of other clusters
also revealed that they were assigned genes that could be
categorized to be involved in different cell specific processes.
It was also revealed from the analysis that there were genes

clustered together with no apparent functional correlation,
as well as genes with no function assigned being grouped
with genes with known similar functions. This could help
in assigning function to these genes and provide basis for
further investigation.

While the grouping of genes with known and unknown
function is also achieved by other methods, it may not hap-
pen at such a fine scale. This mainly stems as a result of in-
appropriately setting the initial number of clusters. The sim-
ilarity criterion between members in a cluster and the appar-
ent differences between clusters is captured in the parameter
τ. The fine control of separation that can be obtained using
the RPCL based approach aids in reducing the functional
search space. The analysis of the gene expression patterns
during the development and maturation of the rat kidney,
which was the other system that we chose to evaluate the
model, evinces this fact.

Stuart et al. had studied the gene expression patterns dur-
ing kidney organogenesis (Stuart et al., 2001). In this study,
the expression of over 8,740 rat genes were analyzed. Their
analysis revealed five discrete patterns during nephrogene-
sis. These patterns were clustered into five distinct groups:
(i) a group which constituted genes that presented high lev-
els of expression in the early embryonic kidney linking them
to translation and replication processes; (ii) a group that
showed increased levels during mid-embryogenesis; (iii) an-
other group that peaked during the neonatal period with the
predominance of retrotransposon RNAs; (iv) a set of genes
that steadily increased throughout the development; (v) a
group that was weakly expressed throughout embryogene-
sis and had increased levels in the adult kidney. Analysis
of the expression data revealed three very distinct patterns,
which were converged to with aτ = 2.0. These three were
the most distinct patterns that were present in the data. It
was rather easy for the algorithm to detect these patterns
and all of the expression data were first assigned to any one
of these patterns, depending on its distance from the cen-
troid. It is however important to realize that developmental
stage specific expression of genes could include a variety
of functionally distinct genes that would certainly belong to
more than three groups. It is also important to understand
that two different functionally distinct gene might also have
the same expression profile. Thus, within each group there
may exist a set of sub groups that may provide additional
functional signature to its members. Decreasing the value
of τ can differentiate this additional signature. Upon run-
ning the simulations by setting the value ofτ to 1.5, the
algorithm converged to four patterns (Fig. 6). Further simu-
lations, by lowering the value ofτ helped in differentiating
patterns with finer differences. Simulations withτ = 1.0,
converged to a set of five patterns.Fig. 6(c) shows the ad-
ditional signatures that were separated were close to one of
the patterns that were obtained whenτ was set to 2.0. Fur-
thermore, the analysis of genes assigned to the clusters re-
vealed functional co-involvement, similar to those reported
earlier (Stuart et al., 2001).
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Fig. 5. This figure shows the expression trends of cluster 6 (threshold 1.5) and the trends of clusters containing those same genes when the threshold
was raised to 1. All genes found in clusters 9, 10, and 40 are also found in cluster 6 (1.5) and the similar trend of the all four clusters reinforces that
fact. Only half of the genes in clusters 25 and 5 are found in cluster 6 (threshold 1.5) and once again the trend of these two graphs compared to cluster
6 (threshold) clearly shows some similarity supporting the fact that some genes are shared while others are not. Cluster 6 and 36 (both of threshold 1)
only share one gene each with cluster 6 (threshold 1.5) and once again the trends of the two with threshold of 1 compared to that of cluster 6 (threshold
1.5) clearly shows the majority of the genes in these two clusters are not found in cluster 6 (threshold 1.5).
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Fig. 6. Centroids of the clusters obtained for the kidney gene expression data. The value ofτ used were (a) 2.0, (b) 1.5, and (c) 1.0. The development
stages on thex-axis correspond to 0= 13 embryonic days, 2= 15 embryonic days, 4= 17 embryonic days, 6= 19 embryonic days, 8= new
born, 10 = 1 week and 12= adult.

4. Conclusion

Selecting the correct number of clusters (k) for cluster-
ing is still an open problem that influences the accuracy
and relevance of the clustering results. However, defining a
condition that captures similarity between patterns as intro-
duced in our implementation of RPCL, determines the cor-
rect number of clusters with the desired distinction between
patterns. Since clustering is supposed to uncover similar
groups, determining the number of groups heuristically aids
in the interpretation of the results. Defining the width be-
tween clusters is equivalent to differentiating genes based on
their level of expression. This is a more effective approach
to arrive at functionally similar genes than by mapping it on
to a fixed number of clusters where no similarity criteria are
defined. Further, the fine separation obtained using RPCL
also helps in reducing the functional search space.

It is important to mention that when clustering data in high
dimension there is a possibility of multiple solutions. Thus,
when patterns are not easily separable RPCL does produce
multiple solutions but in all cases the solutions are within set
constraints. An obvious question is: what is a good threshold
to use? The answer depends on the data being analyzed
and the specific questions being asked about the data. In
most cases, it would be possible to mine the expression of
a couple of genes and derive a value forτ from it. We hope

the method described here will contribute towards inferring
function of unknown genes from their expression profiles.
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