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Abstract

The expression of specific mRNA isoforms may uniquely reflect
the biological state of a cell because it reflects the integrated
outcome of both transcriptional and posttranscriptional
regulation. In this study, we constructed a splicing array to
examine f1,500 mRNA isoforms from a panel of genes
previously implicated in prostate cancer and identified a large
number of cell type–specificmRNA isoforms.We also developed
a novel ‘‘two-dimensional’’ profiling strategy to simultaneously
quantify changes in splicing and transcript abundance; the
results revealed extensive covariation between transcription
and splicing in prostate cancer cells. Taking advantage of the
ability of our technology to analyze RNA from formalin-fixed,
paraffin-embedded tissues, we derived a specific set of mRNA
isoform biomarkers for prostate cancer using independent
panels of tissue samples for feature selection and cross-
analysis. A number of cancer-specific splicing switch events
were further validated by laser capture microdissection.
Quantitative changes in transcription/RNA stability and qual-
itative differences in splicing ratio may thus be combined to
characterize tumorigenic programs and signature mRNA iso-
forms may serve as unique biomarkers for tumor diagnosis
and prognosis. (Cancer Res 2006; 66(8): 4079-88)

Introduction

Prostate cancer is a leading cause of morbidity and mortality
among men in the U.S. (1). Although early diagnosis based on
screening for prostate-specific antigen (PSA) has led to a decline in
deaths and a decrease in the prevalence of advanced disease at the
time of tumor diagnosis (2), disagreement and debate continue
with regard to the efficacy of PSA screening and proper strategies
for treatment after initial diagnosis (3, 4). New biomarkers with
diagnostic and prognostic values are thus continually sought for
combating cancer, especially in the case of prostate cancer.
Although classic approaches based on gene expression profiling
have revealed many potential cancer biomarkers, several studies
indicate that tumor-specific mRNA isoforms may further improve

the specificity of tumor diagnosis (5) and/or provide novel
mechanistic insights into tumor biology (6, 7).

The transcriptome in eukaryotic cells is marked by prevalent
expression of mRNA isoforms. A recent estimate suggests that
more than half of the human genes express mRNA isoforms via
alternative splicing (8). Interestingly, alternatively spliced regions
often show a high degree of sequence conservation among
mammalian genomes, suggesting that many alternative splicing
events may have critical biological functions (9). mRNA isoforms
may dramatically enlarge the complexity of the proteome, thereby
contributing to functional diversity in different cell types.
Alternative splicing may also serve as a mechanism to achieve
temporal and spatial regulation of gene expression as increasing
evidence suggests that alternative splicing may be tightly coupled
with both upstream events in transcription and downstream steps
in mRNA export, degradation, and translation (10–13). Thus, the
pattern of mRNA isoform expression likely reflects a highly
integrated program in the regulation of gene expression in a
specific cell type. Because distinct mRNA isoforms may be uniquely
associated with a disease process, either as products of cellular
transformation or as causative factors for a specific disease
phenotype, characteristic mRNA isoforms may serve as biomarkers
for disease diagnosis and prognosis as well as unique targets for
disease intervention (14, 15).

Gene expression profiling by microarray has been a powerful
tool for cancer biomarker discovery. Most array platforms
developed to date, however, are not designed to distinguish
mRNA isoforms, and only a few initial attempts have been made
to examine mRNA isoforms in eukaryotic cells (8, 16–20). We
previously described a multiplex mRNA isoform detection system
known as the RASL assay ( for RNA-mediated annealing, selection,
and ligation), which is coupled with a universal array on
fiberoptic bundles to allow high-throughput mRNA isoform
profiling (16). More recently, we developed a parallel approach
known as the DASL assay ( for cDNA-mediated annealing,
selection, extension, and ligation; ref. 21) and showed that this
approach works with partially degraded biological samples such
as RNA derived from tissue blocks that have been formalin-fixed
and paraffin-embedded (22). In this report, we used the DASL
assay system to identify signature mRNA isoforms that are highly
characteristic of prostate cancer at both the cell and tissue levels.
We developed a data analysis strategy to quantify changes in
transcript abundance and mRNA isoform ratio, which reveals an
extensive link between transcriptional and posttranscriptional
regulation, a newly emerged paradigm in coupled processes
during gene expression (23–28). The approach described here
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establishes the foundation for future large-scale analysis of
biomarkers associated with distinct disease stages and clinical
outcomes in prostate cancer, which is also generally applicable to
other cancer and disease types.

Materials and Methods

Cell culture. LNCaP, DU145, and PC3 cells were maintained in RPMI

1640 plus 10% fetal bovine serum in the presence of penicillin (100 units/

mL) and streptomycin (100 Ag/mL). LAPC4 cells were cultured in DMEM
plus fetal bovine serum and antibiotics. RWPE1 and RWPE2 were cultured

in keratinocyte serum-free medium (Invitrogen, Carlsbad, CA) supple-

mented with bovine pituitary extracts (50 Ag/mL), epidermal growth factor

(5 ng/mL), and gentamicin (50 Ag/mL).
Tissue specimens. Two sets of formalin-fixed and paraffin-embedded

prostate tissue samples were used in this study. Set 1 consisted of 10

cancerous and 6 normal tissues, and set 2 included 12 cancerous and 10
normal tissues. Radical prostatectomy specimens were processed under a

routine pathologic protocol. Specimens were received from the pathology

laboratory within 45 minutes of removal and fixed in 10% buffered formalin

overnight. Representative sections were submitted for tissue processing and
paraffin embedding. Histopathologic features of each sample were reviewed

to confirm diagnosis and tumor content with Gleason scores ranging from

7 to 9, and tumor content from 25% to 95%. Specific tissue sections that

included areas of carcinoma were selected for RNA extraction.
RNA isolation. For each tissue sample, RNA was extracted from five

5-Am sections using the High Pure RNA Paraffin Kit (Roche Diagnostics

GmbH, Mannheim, Germany), yielding 0.5 to 3 Ag of total RNA. RNA
extraction, DNase treatment, and other steps were done according to the

manufacturer’s protocol, except that Proteinase K digestion was carried out

for 12 hours. Isolated RNAs were stored at �80jC until use.

BeadArray technology. Universal bead arrays were assembled by
loading pools of glass beads (3 Am in diameter) derivatized with

oligonucleotides onto the etched ends of fiberoptic bundles (29). About

50,000 optical fibers are hexagonally packed to form an f1.4 mm diameter

bundle. The fiberoptic bundles are assembled into an array matrix (Sentrix
Array Matrix), comprising 96 bundles arranged in an 8 � 12 matrix that

matches the dimensions of standard microtiter plates (30). This

arrangement allows simultaneous processing of 96 samples. A decoding

process is carried out to determine the location and identity of each bead in
every array location (31).

Assay probe design. As shown in Fig. 1, two oligonucleotide probes were

designed to explore each target site on the cDNA as described previously (21).
The first oligo consists of the donor exon-specific sequence and a universal

PCR primer sequence (P1, 5V-ACTTCGTCAGTAACGGAC-3V) at the 5V-end. The

second oligo consists of the acceptor exon-specific sequence and a universal

PCR primer sequence (P2, 5V-GTCTGCCTATAGTGAGTC-3V) at the 3V-end.
The gene-specific sequence is designed with Tm ranging from 57jC to 62jC.

To detect specific mRNA isoforms from a common precursor mRNA, a

specific address sequence is linked to each isoform-specific oligo between the

target sequence and the primer sequence (colored lines in Fig. 1). This
address sequence, which is complementary to one of 1,536 capture sequences

on the universal microarray, allows the hybridization of PCR-amplified

products to the array for quantification of individual mRNA isoforms.
DASL assay reaction and hybridization on Sentrix arrays. cDNA

synthesis, DASL assay processes, array image processing, and signal

extraction were as described previously (21, 22). Briefly, a 20 AL cDNA

synthesis reaction was carried out with a reaction mix (MCS, Illumina, San
Diego, CA) containing biotinylated random nonamers and oligo-d(T)18, and

total RNA (up to 1 Ag). Pooled assay oligos were annealed to their targets on

the cDNA under a controlled hybridization program. The cDNA was

immobilized on paramagnetic beads and washed to remove excess oligos.
Hybridized oligos were then extended and ligated to generate amplifiable

templates using Illumina-supplied reagents and conditions (DASL assay

system manual, Illumina). PCR was done using universal PCR primers, one
labeled with Cy3. Single-stranded PCR products were prepared by

denaturation, and hybridized to Sentrix arrays under a temperature
gradient program. The arrays were imaged using a BeadArray Reader

(Illumina). Image processing and intensity data extraction software were as

described previously (32). Raw data were normalized using the cubic spline

normalization strategy (33).
RT-PCR and qPCR. One microgram of total RNA was reverse-

transcribed using random hexamers and AMV reverse transcriptase. cDNA

(equivalent to 50 ng of RNA) was subjected to PCR. Specific primer pairs

with matching Tm’s were targeted to constitutive exonic sequences
surrounding alternative exons or exonic regions. Most PCR primers

(specific sequences for individual primers are listed in Supplementary

Table S1) were designed to amplify f90-bp fragments. Standard PCR

conditions were used, but cycle numbers varied from 25 to 35 cycles to
maintain linearity. The lowest cycle number sufficient to amplify detectable

products was chosen in each case. PCR products were separated on 2%

agarose gels stained with ethidium bromide. Quantitative real-time PCR
(qPCR) analyses were done on the ABI Prism 7900HT sequence detection

system (Applied Biosystems, Foster City, CA) as described previously (21).

Data normalization and analysis. Prior to statistical analysis, raw data

were first normalized against a synthetic average by using LOcally WEighted
polynomial regreSSion (LOWESS) transformation (34). The data was then

scaled to the same median and cluster analysis was conducted using Cluster

and TreeView.8

Statistical significance of changes in transcript abundance (Pt) and
splicing (Ps) were analyzed as follows. To calculate Pt, we first summed the

level of individual isoforms in each measurement. This gave rise to three

values from three biological repeats in one cell type or experimental
condition, which were then compared with the three values from a differ-

ent cell type or experimental condition to calculate the P value. To calculate

Ps, we first derived the ratio of each isoform measured in two cell types or

under two different experimental conditions. This gave rise to three ratio
values from three biological repeats, which were then compared with the

three ratio values for the alternative isoform from the same gene to

calculate the P value.

Results

Experimental design to profile mRNA isoforms. To accurately
profile mRNA isoforms by microarray, a pool of oligo pairs (in each
pair, one oligo is indexed with a unique address sequence) was
annealed to cDNAs generated with biotinylated random primers
(Fig. 1A). The annealing reaction was followed by affinity selection
for hybridized oligos on biotinylated cDNA, removing unhybridized
oligos. Paired oligos were next ligated to become amplifiable
templates for PCR. This step distinguishes our system from other
array-based approaches because specificity is enforced by hybrid-
ization and ligation, rather than by hybridization alone. The PCR
step significantly enhances the sensitivity of the assay and the
signal amplification process is relatively unbiased because all oligo
pairs contain identical universal primer landing sites for PCR and
the length of amplicons is similar. Amplified products were
quantified by hybridization to a universal Sentrix array consisting
of a unique set of address sequences. This highly specific, sensitive,
and quantitative system has made it possible to profile gene
expression in some of the most demanding and widely accessible
biological samples, such as RNA extracted from formalin-fixed,
paraffin-embedded tissue blocks in which RNAs are heavily cross-
linked and extensively fragmented (22).

To explore the value of mRNA isoforms for tumor classification,
we first did isoform profiling experiments on a panel of tumor cell
lines. Because specific sequence information at splice junctions is

8 http://rana.lbl.gov/EisenSoftware.htm.
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required for oligo design, we selected several hundred genes for
isoform annotation. We focused on genes associated with prostate
cancer from published expression profiling experiments (35–38),
the cancer anatomy project at NIH,9 and mechanistic studies

reported in the literature (39). Of f500 genes selected, f70% (364
genes) were found to express multiple mRNA isoforms, which were
individually annotated by aligning cDNA sequences against
genomic sequences using a computer-assisted alternative splicing
annotation program (40). The statistical features of the annotated
genes were separately described (41). Oligos were designed and
synthesized for each splice junction to examine a total of 1,532

Figure 1. Profiling mRNA isoform expression in prostate cancer cell lines in comparison with other tumor cell lines. A, the DASL assay scheme. Total RNA is
first converted to biotin-labeled cDNA using biotinylated nonamers and oligo-dT. Oligos targeted to alternative splice sites are each tagged with a specific address
(blue and purple ). Both indexed oligos and common oligos contain universal primer sites for PCR. cDNA is annealed to oligos, followed by affinity selection on
streptavidin beads. Oligos annealed to specific splice junctions in pairs are ligated and the resulting amplicons are amplified by PCR using universal primers, one
of which is Cy3-labeled. The products are hybridized to universal Sentrix bead arrays. B, unsupervised hierarchical clustering analysis of 1,532 isoforms expressed in
18 cancer cell lines. Rows, individual isoforms; columns, individual samples. Prostate cell lines were assayed in triplicate (biological replicates) and other cell lines were
measured in duplicate (technical replicates). Dendrogram of samples shows overall similarity in isoform profile across the cell lines. Prostate cancer cells (red) are
clustered in one group and the rest of tumor cell lines (black ) in another. Androgen-sensitive (LNCaP and LAPC4) and -insensitive (PC3 and DU145) cell lines were
also segregated. C, examples of prostate cell type–specific isoforms.

9 http://cgap.nci.nih.gov/Tissues/GXS.
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mRNA isoforms, which correspond to a total of 721 alternative
splicing events (note that many genes show more than one
alternative splicing event).
Signature mRNA isoforms in prostate cancer cell lines. The

total RNA extracted from three independent cultures of 6 prostate
cell lines and 12 randomly selected tumor cell lines of nonprostate
origin were profiled. Results from independent cultures of the same
cell type (biological replicates) showed high concordances (R2 >
0.95) in all cases (data not shown; ref. 21). Hierarchical clustering
analysis revealed robust cosegregation of related cell types, with all
prostate cancer cell lines clustering on one side of the dendrogram
(Fig. 1B). Significantly, each prostate cancer cell line was associated
with the expression of a group of specific RNA isoforms (Fig. 1C).
For example, the KLK3 gene, which encodes the PSA, was highly
expressed in LNCaP cells derived from early neoplasia, but was
depressed in other prostate cancer cell lines, consistent with
elevated PSA expression in early neoplastic prostate tumors
reported in the literature. Clustering analysis also revealed two
large groups of isoforms that were either uniformly up-regulated or
down-regulated in all prostate cancer cell lines compared with all
other tumor cell lines (Fig. 1B). Together, the data show the ability
of this approach to define the molecular characteristics of
individual cell types by mRNA isoforms.

The six prostate cell lines surveyed were segregated into three
distinct groups: (a) cell lines derived from normal prostate epithelial
cells (RWPE-1 and RWPE-2), (b) androgen-dependent cells (LNCaP
and LAPC4), and (c) androgen-independent cells (DU145 and PC3).
The coclustering of the RWPE lines was expected because they were
derived from a common origin. RWPE-1 was immortalized by a
human papillomavirus, and RWPE-2 is a v-Ki-ras transformed
derivative of RWPE-1 (42), raising the possibility that these lines may
be useful for studying regulated splicing induced by ras signaling.
Our array results showed differential expression between RWPE-1
and RWPE-2 cells of several isoforms from a number of genes,
including CD44, KRT15, and SAMSN1 (Fig. 1C). Of particular interest
is the case of CD44 alternative splicing, which has been shown to be
regulated by ras via the RNA-binding proteins, SAM68 and hnRNP A1
(43). These results therefore validate our experimental approach for
defining regulated splicing events.
Deconvoluting changes in transcript abundance and

splicing. The abundance of mRNA isoforms in a specific cell
type may result from regulated gene expression at the level of
transcription, RNA stability, and splicing. This complexity is clearly
reflected by our array data (Fig. 1C). In many cases, multiple
isoforms from one gene were similarly elevated or depressed in a
given cell type, indicating coordinated changes in transcription
and/or RNA stability. On the other hand, other isoforms seemed
to be uniquely expressed in a specific cell type(s), suggesting
that those genes may be differentially regulated at the splicing
level.

To develop a standardized data analysis strategy to differentiate
changes at different regulatory levels, we reasoned that an
apparent array signal (Sapp) should be equal to X + Y + (P + N)
� h , where X is the baseline signal, Y is the measurement error, P is
the true product level, N is the cross-hybridization signal, and h is
the probe efficiency. Because of the high redundancy built into our
array system (31), both the baseline signal and measurement error
are minimal, as indicated by the high concordance among
technical replicates. In addition, the ligation reaction built into
our assay practically eliminates cross-hybridization, as previously
shown (16). Thus, the formula can be simplified to Sapp � P � h . By

taking the ratio of readings from the same probe in pairwise
comparisons, the fold change can thus be expressed as log2(P1/P2)
for product P in cell type 1 versus cell type 2.

As illustrated in Fig. 2A , we were able to calculate total transcript
changes by summing up the weighted fold change for isoforms A
and B, where the weight was roughly estimated by the fractional
contribution of individual isoforms to the total signal detected
for a given gene. To calculate a splicing change, we subtracted
fold changes for the two isoforms to detect ‘‘anticorrelation’’ as
previously described (18). For instance, if two isoforms were
similarly up-regulated or down-regulated, the splicing change for
the gene would be close to zero. If one isoform were up-regulated,
and the other down-regulated, the splicing change would be the
sum of the fold changes. In cases where a pre-mRNA gives rise to
more than two isoforms, we selected probes exhibiting the largest
ratio difference to calculate the trend change in splicing. To
determine the statistical significance of a change in transcript
abundance or splicing, t tests were conducted based on biological
repeats to calculate a P value for the transcript change (Pt) and
splicing change (Ps). This data transformation allowed us to use
the same data set to score potential changes in transcript
abundance, splicing, or both in pairwise comparisons.
Experimental validation of the data analysis strategy. To

experimentally validate our data analysis strategy, we selected 107
genes for expression profiling using an independent oligo pool in
which three pairs of oligos were designed to target common
regions in each transcript, a standard approach for expression
array using the DASL assay (21). The ratio between mean signals
for each probe set in one cell line (LNCaP) versus another (PC3)
was used to derive differences in total transcript abundance
(Fig. 2B). When the expression array data were compared with
those calculated from the splicing array, we obtained a concor-
dance of R2 = 0.75, indicating a reasonable agreement between our
approach and the standard expression array analysis. To further
validate our data analysis strategy, we measured fold differences in
a subset of the genes by qPCR and obtained a similar concordance
(R2 = 0.67) with splicing array results (Fig. 2C).

To validate the splicing changes detected in prostate cancer cell
lines, we selected a panel of genes for RT-PCR analysis. The results
are shown in Fig. 2D for 24 genes, ranked in order of P values (Ps)
for calculated splicing changes. Although quantitative differences
between fold changes detected by splicing array and those by
RT-PCR are difficult to compare, the RT-PCR data clearly
corroborate the array results in a qualitative manner. Among 19
genes scored at a P value of <0.005 for differences in splicing, 18 were
detected by RT-PCR as being differentially spliced between LNCaP
and PC3 cells with the exception of the SF3B gene (indicated by the
cross ; Fig. 2D). Conversely, four out of five genes showing higher
P values with the array analysis were indeed unaltered in splicing by
RT-PCR with the exception of the SFSR2 gene (indicated by the cross),
which showed a slight shift in splicing. We therefore chose a P value
cutoff of <0.005 to score splicing changes. A similar P value cutoff
was used to identify changes in transcript abundance, although this
choice was somewhat arbitrary because of the lack of quantitative
comparison between microarray and qPCR data. Together, these
independent methods validated the data analysis strategy in
simultaneously scoring changes in transcript abundance and
splicing using the same data set from the splicing array.

‘‘Two-dimensional’’ profiling and coordinated transcrip-
tional and posttranscriptional regulation. Having established a
data analysis strategy to simultaneously score changes in transcript
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abundance and splicing, we analyzed and plotted the data from
different prostate cancer cell lines according to fold differences for
individual genes at the level of transcript abundance and splicing
(Fig. 3). To illustrate genes that were altered significantly between
two given cell types, we highlighted genes with fold changes >1.5 and
P < 0.005 with different colors: black, genes with no significant
change in both splicing and transcript abundance [fold change <1.5
(<0.6 on the log2 scale) or P > 0.005]; red, genes showing a change in
transcript abundance, but not splicing ( fold change >1.5 and P <
0.005 only at the transcript abundance level); green, genes showing a
change in splicing, but not transcript abundance ( fold change >1.5
and P < 0.005 only at the splicing level); and blue, genes showing
changes in both transcript abundance and splicing ( fold change >1.5
and P < 0.005). For isoforms showing near-background intensities in
both cell types or in cases where both isoforms had intensities near
background in any cell type, a reliable splicing change would be
difficult to derive. In these cases, the splicing change was set to zero,
and only changes at the transcript abundance level were calculated.

Based on the above criteria, a comparison between LNCaP and
PC3 cells revealed that many genes showed significant differences

in transcript abundance, splicing, or both (Fig. 3A): a substantial
number of genes showed changes only in transcript abundance
(red , 23.3% of total), indicating that these genes may be
differentially regulated at the level of transcription and/or RNA
stability. We also noted many genes showing changes only in
splicing (green , 4.2% of total), suggesting differential splicing in
these prostate cell lines. Strikingly, many genes showed significant
covariation in both transcript abundance and alternative splicing
(blue , 9.7% of total), indicating that they may be regulated by
coupled mechanisms. Among genes showing changes in splicing, a
large fraction (60-70%) exhibited covariation (genes labeled with
blue over those labeled with either blue or green). Similar
observations were also made between PC3 and DU145 cells
(Fig. 3B) and all pairwise comparisons between the prostate cancer
cell lines (data not shown). These results strongly suggest that
splicing regulation may be extensively coupled with the control of
transcription/RNA stability in vivo .
Tumor classification based on signature mRNA isoforms.

Having established the capability of the array method and the data
analysis strategy, we applied this approach to the analysis of

Figure 2. Data analysis strategy and validation by independent quantification methods. A, oligo design for splicing array and data analysis strategy. Oligos
A and B are targeted to alternative splice sites. The change in transcript abundance is expressed as the sum of weighted ratios, whereas the change in splicing
is calculated by the fold difference of individual isoforms. B, concordance in transcription of 107 genes in LNCaP and PC3 cells measured by the splicing array and the
standard gene expression array. C, concordance in the expression of 24 genes measured by the splicing array and qPCR. D, RT-PCR validation and determination
of the P value cutoff for splicing switches. Listed is a panel of genes along with the raw data from the splicing array comparing LNCaP and PC3 cells. The alternatively
spliced regions for each gene with the primer design for RT-PCR analysis (right ). PCR cycle numbers were individually determined. The trend changes are largely
consistent with the array results, with two outliers (�).
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clinical samples. In this study, we took advantage of the benefits of
our technology for analyzing formalin-fixed, paraffin-embedded
tissue samples (21), and collected 10 prostate tumors and 6 normal
tissues from the University of California, San Diego prostate tumor
bank. These human tissue samples had been stored for various
periods up to 11 years, and histopathologic characterization of
H&E stained sections showed variable degrees of tumor content
and pathologic stages (Table 1A). Total RNA was isolated from
5-Am sections of each tissue block and used in the DASL assay.
Each RNA sample from the same tissue was arrayed twice to ensure
assay reproducibility.

To identify isoform signatures uniquely associated with prostate
cancer, we conducted feature selection by t test to identify isoforms
that were differentially expressed in prostate cancer compared with
normal prostatic tissue. The top 50 differentially expressed
isoforms were of P < 0.0003, whereas the median number at this
cutoff in 200 random permutations was 2 and the 90th percentile
was 5, indicating that the features selected are highly specific (44).
During the course of data analysis, we realized that the t test might
not be ideal for feature selection because it penalizes those
showing large variations in cancer samples. For example, an
isoform may be a good biomarker for prostate cancer if it is
expressed at a low level in normal prostatic tissue and a high but
variable level in prostate cancer. Such an otherwise valuable
isoform biomarker would not rank high in a t test. To overcome
this problem, we conducted a Wilcoxon test in parallel to derive a
separate list of 50 signature isoforms, which favored the
significance of trend changes in comparison between normal and
tumor specimens. By combining results that were scored
significantly in both tests, a total of 61 unique isoform features
were identified. We used these features to segregate normal tissues
from tumors by unsupervised clustering analysis and determined
the improvement of tumor classification by sequential elimination
of low-ranking isoform features. A total of 57 isoforms were found
to maximally segregate tumors from normal tissues (Fig. 4A).

To validate selected isoforms as prostate cancer biomarkers, we
did additional profiling experiments using an independent set of
normal and tumor tissues (Table 1B). The 57 isoforms selected
from the first sample set were used to classify the new sample set
and a good segregation was achieved with misclassification of only
1 out of 10 normal tissues, and 1 out of 12 tumor samples, the latter
of which contained a lower tumor content (Fig. 4B). We then
conducted a converse analysis by using the second sample set for
feature selection and the first sample set for validation.

We identified a separate list of 57 isoforms (the number is co-
incidental) capable of maximally segregating prostate tumors from
normal prostatic tissues (Fig. 4C and D). Ten isoforms were
common in both lists, which is not surprising, considering the
contribution of multiple variations in tissue heterogeneity to
signature ranking as previously discussed (45). Importantly, when
the combined panel of 104 isoforms was displayed across all tissue
samples (Fig. 4E), the majority of the isoforms showed differential
expression between normal prostate tissue and prostate cancer.
These isoform biomarkers are listed according to the P values from
the Wilcoxon test in Supplementary Table S2.

Similar to the tumor cell line comparisons, we noticed that many
of the mRNA isoform biomarkers derived from the same precursor
mRNAs were similarly elevated or repressed in tumors, indicating
that those genes may be altered primarily at the level of gene
expression. However, many specific isoforms were also uniquely
up-regulated or down-regulated in tumors, suggesting that
individual mRNA isoforms from those genes may be differentially
regulated at the level of splicing. These specific mRNA isoforms
would thus be more powerful than total transcript abundance in
molecular classification of cancer.
Comparison between cell line and tumor markers. We next

asked whether the isoform biomarkers identified in tumors were
characteristic of prostate cancer cell lines, and conversely, whether
signature mRNA isoforms in prostate cancer cell lines could reflect
characteristics of prostate cancer. As shown in Supplementary
Fig. S1A , the use of the 104 isoform markers derived from prostate
cancer tissues enabled the clustering of the prostate cancer cell
lines as well, with a clear distinction from other tumor cell lines.
Thus, these biomarkers are characteristic of prostate cancer at
both the tissue and cell line levels. About half of the isoforms were
uniformly up-regulated or down-regulated in prostate cancer cell
lines in comparison with other tumor cell lines, suggesting that this
group of isoforms may be useful in future cross-tumor compar-
isons. The remaining half were differentially expressed in subsets of
prostate cancer cell lines and other tumor cell lines, suggesting that
these groups may play some role in tumorigenesis, but not in a
prostate cancer–specific manner.

We then did a converse analysis, asking whether we could
segregate prostate cancers from normal prostatic tissues using
isoform markers derived from prostate cancer cell lines. We
separated the cell line markers into three groups: (a) those showing
cell type–specific isoform expression in prostate cancer cell lines
(see Fig. 1C); (b) those showing universal high expression in all

Figure 3. ‘‘Two-dimensional profiling’’ for changes in
transcript abundance and splicing. A, comparison between
LNCaP and PC3 cells. B, comparison between PC3 and
DU145 cells. Individual genes and associated alternative
splicing events are displayed in a two-dimensional plot
according to calculated changes in transcript abundance
and splicing. Colors are assigned based on fold difference
(>1.5 fold or >0.6 on the log2 scale) and the P value (<0.005).
Black spots, no change in both transcript abundance and
splicing; red spots, change in transcript abundance only;
green spots, change in splicing only; and blue spots, changes
in both transcript abundance and splicing.
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prostate cancer cell lines in comparison with other cancer cell lines
(red, Fig. 1B); and (c) those showing universal low expression in
prostate cancer cell lines in comparison with other cancer cell lines
(green, Fig. 1B). None of these isoform groups could be used to
segregate prostate tumors from normal prostatic tissues (Supple-
mentary Fig. S1B for the first group; data not shown for the second
and third groups). These observations indicate that contrary to the
ability of prostate cancer biomarkers to characterize prostate
cancer cell lines, biomarkers derived from cell lines may not be

representative of the original tumors, likely reflecting events during
cell culture among other possibilities.
Splicing switch during prostate tumorigenesis. Inspection of

the isoform biomarkers listed in Supplementary Table S2
indicates that many genes are alternatively spliced during
prostate tumorigenesis. To identify genes that showed isoform
expression change in opposite directions in prostate tumors, we
selected five pairs of normal and cancerous tissues from the
same patients in our sample sets and did two-dimensional

Table 1.

(A) Clinicopathologic information of the first set of prostate normal and tumor tissues

RNA no. Case no. Age PSA Stage Gleason score Tumor (%) BPH (%) Atrophy (%) Stroma (%) Inflammation (%)

77 N1 66 3.15 0 0 10 89 1

85 N2 66 5.4 0 25 0 75 0

88 N3 61 2.23 0 10 30 60 0
113 N4 70 4.78 0 10 5 85 0

109 N5 67 7 0 5 0 90 5

56 N6 67 5.7 0 5 0 94 0

78 T1 66 3.15 T2cNxMx 3 + 4 = 7 30-35 5 0 65 0
86 T2 66 5.4 T3bN0Mx 4 + 4 = 8 90 5 0 5 0

87 T3 61 2.23 T2bN0Mx 4 + 3 = 7 25-30 45 5 20 0

114 T4 70 4.78 T3aNxMx 4 + 4 = 8 40 0 5 55 0

110 T5 67 7 T2bNxMx 3 + 4 = 7 40 0 0 58 0
122 T6 67 7 T2bNxMx 3 + 4 = 7 70 0 5 25 0

72 T7 68 8.27 T3bN1Mx 4 + 3 = 7 70 0 0 30 0

84 T8 60 9.99 T3bN0Mx 4 + 5 = 9 70-80 0 0 20 0

107 T9 68 7.4 T2bNxMx 4 + 3 = 7 60 10 0 30 0
123 T10 78 17.7 NA 5 + 5 = 10 80 0 0 20 0

(B) Clinicopathologic information of the second set of prostate normal and tumor tissues

22 N1 74 6.7 0 10 40 50 0

30 N2 55 11.68 0 10 30 68 0
44 N3 61 5.46 0 10 2 88 0

46 N4 74 8.06 0 45 20 35 0

121 N5 50 0.22 0 30 2 68 0

148 N6 67 4.68 0 35 10 55 0
155 N7 70 8.4 0 40 10 48 2

196 N8 73 4.59 0 40 5 55 0

201 N9 64 NA 0 20 5 45 0

133 N10 NA NA 0 25 5 75 0
5 T1 67 8.48 T3bN1Mx 5 + 4 = 9 50 0 0 20 0

21 T2 74 6.7 T2bNxMx 4 + 4 = 8 60 10 10 20 0

147 T3 78 6.9 T2bN0Mx 4 + 4 = 8 70 0 0 30 0
167 T4 72 18 T2bN0Mx 4 + 4 = 8 80 0 10 10 0

174 T5 83 15 T4 5 + 4 = 9 70 5 0 25 0

177 T6 67 10.87 T2cN0Mx 4 + 4 = 8 40 0 30 30 0

189 T7 77 2.51 T2bN2Mx 5 + 5 = 10 70 0 0 0 30
192 T8 61 5.7 T3aNxMx 4 + 4 = 8 50 5 10 35 0

197 T9 67 21.82 T3aN1Mx 4 + 4 = 8 95 0 0 5 0

198 T10 60 4.06 T3bNxMx 4 + 4 = 8 65 0 10 25 0

202 T11 67 12.34 T3bNxMx 4 + 4 = 8 90 0 5 5 0
204 T12 54 3.91 T3cNxMx 4 + 5 = 9 80 0 5 15 0

NOTE: Summarized are the clinicopathologic data in the two sets of prostate carcinoma and benign prostate tissues. The noncancerous, benign prostate

tissues were retrieved from patients who either had diagnostic carcinomas elsewhere or from resections for benign diagnosis. The patient characteristics

include age, pre-surgery PSA, tumor stage based on the 6th edition of the American Joint Committee on Cancer guideline, Gleason grades, and scores.
The samples were reviewed for percentage of tumor, glandular hyperplasia, atrophy, stroma, and inflammation. Identical PSA values indicate samples

from the same patients.
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analysis. As shown in Fig. 5A , a number of genes showed
changes with sufficient statistical significance in splicing (green,
11% or 1.5% of total), in both transcript abundance and splicing
(blue, 7% or 1% of total), and transcript abundance alone (red,
9% or 1.2% of total).

To validate these changes, we prepared laser-captured normal
prostatic epithelia and prostate cancer samples from indepen-
dent frozen tissues (see representative captures in Fig. 5B) and
conducted RT-PCR analysis (Fig. 5C). As predicted by the array
result, two mRNA isoforms expressed from the MAPT gene
(encoding the microtubule-associated tau protein) showed
opposite changes in normal versus tumor, indicating a splicing
switch during tumorigenesis. The CACNA1D gene (which
encodes a Ca2+ channel) was up-regulated in prostate cancer,
but the larger isoform was more elevated than the smaller
isoform, indicating that the gene was differentially regulated at
the levels of both transcript abundance and splicing. The
AMACR gene (which encodes a-methylacyl-CoA racemase) has
recently emerged as a robust biomarker for prostate cancer

(46, 47). We analyzed the two isoforms resulting from the
alternative use of the last exon coupled with alternative
polyadenylation (5), and found that whereas one isoform showed
a quantitative up-regulation in prostate cancer compared with
normal prostatic tissues, the other seemed to be expressed only
in prostate cancer. The short isoform may thus serve as a better
indicator for prostate cancer, which agrees with a recent analysis
of a large number of expression profiling results (5). Together,
these data not only validate our profiling results, but also
illustrate signature mRNA isoforms as unique biomarkers for
prostate cancer.

Discussion

Changes in gene expression may not only serve as diagnostic and
prognostic tumor markers, but also provide potential targets for
the development of new therapeutic strategies (48). Although a
variety of approaches have been used to search for DNA-, RNA-,
and protein-based biomarkers associated with specific tumor types

Figure 4. Unsupervised hierarchical cluster analysis of normal and prostate cancer tissues. A, clustering analysis of the first tissue set with 57 selected isoform
markers. Normal prostatic tissues (red) were completely segregated from prostate cancer tissues. B, the 57 isoforms selected from the first set were used to cluster an
independent second tissue set. One normal and one cancer tissue sample were missegregated. C, an independent list of 57 isoforms identified from the second tissue
set was used to maximally segregate normal from tumor samples. One tumor sample was always missegregated with any combination of isoform markers. D, the
isoform markers selected from the second tissue set were tested on the first tissue set. Two tumor samples were missegregated. All missegregated tumors contain a
relatively low tumor content and/or tumor grade (see Table 1). E, the isoforms selected from the two independent sets (104 in total) are displayed across all tissue
samples to visualize trend changes. Normal tissues (red) and tumors are arranged from left to right according to tumor content and Gleason scores. Up-regulated (left)
and down-regulated (right ) isoforms in tumors are listed according to P values from the Wilcoxon ranking test.
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and/or stages (49), our current effort represents the first systematic
attempt to identify tumor-specific mRNA isoforms. Our analysis is
based on the rationale that mRNA isoforms may better reflect the
biological state of specific cell types or tissues, and thus may serve
as more robust biomarkers for disease diagnosis and prognosis.
This rationale is supported by several recent studies which indicate
that mRNA isoforms are the products of independent regulatory
pathways (18–20).

By using the two-dimensional profiling strategy, we found a large
number of genes that showed coordinated changes in transcript
abundance and splicing, indicating that many distinct steps in gene
expression from transcription, stability control, splicing, and
transport may be distinctly coupled in different cell types. The
network in coupling multiple steps in gene expression represents a
new paradigm in the regulation of gene expression in eukaryotic
cells, although most evidence collected to date is from transfected
cells (50). Our observations reveal frequent coupling events in vivo
and provide physiologically relevant models to pursue potential
coupling mechanisms.

Our isoform profiling experiments suggest that signature
mRNA isoforms may be more powerful in distinguishing between
normal prostatic epithelia and prostate cancer than total
transcript alone. For example, although the gene products of
AMACR were recently reported to be highly diagnostic for

prostate cancer, a particular AMACR isoform seems uniquely
associated with prostate cancer, which is consistent with a
recent analysis based on a large amount of profiling data (5). In
addition, our studies revealed many other candidate splicing
switch events associated with prostate tumorigenesis, and a
number of representative events were further validated by laser
capture microdissection. These data should allow the develop-
ment of prostate cancer biomarkers by combining quantitative
(up-regulation and down-regulation) and qualitative (splicing
switch) differences in gene expression.

When expression profiling is used for biomarker discovery, the
requirement for cross-validation using independent experimental
data sets is of critical importance (51). We accomplished this by
using two different panels of tissue samples. In addition, we
profiled available prostate tumor cell lines in comparison with
other tumor cell lines. When these independent data sets were
cross-analyzed, a highly specific panel of mRNA isoforms
emerged. The identified isoform biomarkers could be used to
segregate prostate cancer from normal prostatic tissues as well as
prostate cancer cells from other tumor cell types. The molecular
signatures are thus characteristic of prostate cancer at both the
cell and tissue levels. Although this approach was only applied to
normal/tumor comparison in the current study, the strategy is
readily applicable for the characterization of tumor stage,

Figure 5. Two-dimensional analysis of normal prostate cancer tissue samples and validation by laser capture microdissection. A, profiling data from five pairs of
normal and prostate cancer samples shown in Table 1A were analyzed by two-dimensional plot. Genes showing changes in transcript abundance and/or splicing
with the fold change cutoff of >0.6 and the P value cutoff of <0.05 are labeled with individual colors as described in Fig. 3. B, examples of laser-captured materials.
A section of frozen normal prostatic tissue (a) or cancerous prostate tissue (d) was used for laser microdissection. Images of cut sections (b and e) and captured
samples (c and f ). C, RT-PCR validation of laser microdissected materials. N, normal prostatic epithelia; T, prostate tumor. Four independent pairs were analyzed;
gene names (left ); splicing pattern and specific PCR primers (right ). MAPT shows an isoform switch between normal and prostate cancer tissues. CACNA1D exhibits
changes in transcript abundance and splicing (note that the upper isoform was significantly elevated than the lower isoform in prostate tumors). AMACR displays
changes in transcript abundance with the upper isoform elevated in cancer in a quantitative manner and the lower isoform elevated in cancer in a qualitative manner.
CD81 was analyzed as a control.
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metastatic potential, and differential drug response by scaling the
splicing array analysis to large numbers of samples in further
studies.
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