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Analysis of transcription control signals using
artificial neural networks
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Abstract

The role of the upstream region in controlling the
transcription efficiency of a gene is well established.
However, the question of predicting the exient of gene
expressed given the upstream region has so far remained
unresolved. Using an artificial neural network (ANN) to
capture the internal representation associated with the
transcription control signal, the present work predicts the
rate of mRNA syunthesis based on the pattern contained in
the upstream region. Further, the model has been used to
predict the transcription efficiency for all possible single
base murations associated with the 3-globin promoter. The
simulation results reveal that apart from the experimental
observation that a -79G-A and -78G-A mutation increases
the efficiency of transcription, mutation in these regions by
Cor T also causes an increase in transcription. Furthermore
the simulation results verify that mutations in the conserved
region, in general. decrease the transcriptional efficiency.
However, the results also show that certain sequence
elements, when mutated, either cause a marginal increase
in the level of transcription or have no effect on transcription
levels. The simulation results can be used as a guide in

designing mutation experiments since an a priori estimate of

the possible outcome of a mutation can be obtained.

Introduction

The basic property of all living cells is the ability to
regulate the expression of their genes depending on some
extracellular signals, and is mostly controlied at the level
of RNA transcription. Transcription controlling elements
are usually grouped into two classes: promoters and
enhancers. These classes can overlap both physically and
functionally. Single base mutations in prokaryotic
promoters and regulatory sequences have helped in
unravelling the complexities underlying the mechanism
of transcription initiation and gene regulation (Meyer
et al., 1980; Youderian ef al., 1982). The transcription of
bacterial genes wherein the regulatory mechanism is
operative at two distinct levels, namely (i) the regulation

Chemical Engineering Division, National Chemical Laboratory, Pune 411
008, India

"To whom correspondence should be addressed

at the initiation step of RNA synthesis, and (i1} premature
termination of an elongating RNA chain (attenuation) are
also likely to be used in the regulation of eukaryotic genes.

Genetic selection for promoters and regulatory muta-
tions in higher eukaryotes were established by studying the
in vivo or in vitro transcription of mutated regions of
cloned DNA. This molecular genetic approach has been
used to characterize the eukaryotic promoters of the
herpes virus thymidine kinase (tk) (McKnight ez /., 1982,
1984; Graves et al., 1986), the SV40 T-antigen (Gidoni
et al., 1985), and mammalian 3-globin genes (Efstratiadis
et al., 1980; Lacy and Maniatis, 1980; Hardison, 1983).
These studies have focused on DNA sequences close to the
site where RNA synthesis starts, and on the sequences
which lie too far removed from the initiation site to play a
role in the regulation of structural gene expression. The
visual analysis of active genes (McKnight and Miller,
1976, 1979) and biochemical measurements of the RNA
synthesis rate of specific genes (Harpold et al., 1979;
Derman er af., 1981) provide evidence that eukaryotic
genes also contain signals for establishing transcription
efficiency. The control of transcription accuracy through
site-specific initiation is represented by an evolutionarily
conserved sequence called the TATA-box which is found
20-30 nucleotides upstream from the transcription start
site. The other control sequences which play a vital role in
the expression of eukaryotic structural genes occur upstream
from the TATA homology, however, such sequences
exhibit no evolutionary conservation. If a greater part of
the information (signals that regulate transcription) is
encoded in these cis-acting elements, then the question arises
whether it would be possible to extract that information
from these elements by in computo experiments.

In order to answer the above question, we have chosen
the globin gene as a model system for our study. The
globin gene has been extensively studied and there are
many genetic disorders associated with the mutations in
this gene and its upstream regions. With a view to extract
information from these cis-acting elements, our efforts
were focused on the upstream region of the globin gene for
developing strategies to analyse the transcription signals
which resulted in the differential expression of the globin
gene. These strategies could then be extended to other
systems. Towards understanding the transcription code,

(" Oxford University Press

293



T.M.Nair, S.S.Tambe and B.D.Kulkarni

we have exploited the artificial neural network (ANN)
modelling approach.

The ANNs can be conceptualized as mathematical
approximations of the biological synapse, and can be
visualized as a massively parallel computational device
composed of a large number of simple computational
units (neurons). The neurons communicate through a set
of interconnections with variable strengths (weights), in
which the learned information is stored. ANNs with error
back-propagation (EBP) (Rumelhart er al., 1986) cur-
rently represent the most popular learning paradigm, and
have been successfully used to perform a variety of input—
output mapping tasks for pattern recognition, gen-
eralization and classification. In fact the application of
EBP networks in solving computational problems both in
biology and other sciences exceeds its biological signifi-
cance (Hirst and Sternberg, 1992: Nair et al., 1994,
Liebman, 1992; Rawlings and Fox. 1994; Sternberg et al.,
1994). Most of the previous work concerning DNA
promoter has been directed towards recognizing promoter
sequences from non-promoter sequences (Lukashin er al.,
1989; Demeler and Zhou, 1991; O’'Neil, 1991, 1992). There
have also been attempts to compare ANNSs with statistical
approaches in predicting promoters (Horton and
Kanchisa, 1992). Advanced methods like knowledge-
based artificial neural networks (KBANNSs) have also
been developed to recognize promoter sequences (Shavlik
et al., 1992). So far little effort has gone towards capturing
the signals responsible for transcription efficiency from the
promoter region. In this paper, we present the results on
the development of a multilayered feedforward network
using an EBP algorithm (Rumelhart er al., 1986) for
predicting the relative transcription levels (RTLs) of a
eukaryotic gene and its use in the analysis of the
transcription signals associated with the promoter region.

Systems and methods

The simulation programmes were written in FORTRAN77
and compiled using the Microsoft Fortran 5.0 compiler
for the IBM PC and compatibles under the DOS 5.0
operating system.

Data

The data for network modelling was taken from the
mutation studies carried out by Myers er al. (1986),
wherein saturation mutagenesis (Myers e al., 1985) has
been used to introduce random single base substitutions
into the mouse J-globin promoter region. The effects of
single base substitutions in the 3-globin promoter have
been determined by comparing the levels of correctly
initiated RNA derived from the test and reference
plasmids co-transfected into HeLa cells and expressed as

the RTL of each mutant. RTL has been calculated using
the following expression:

M /R,
RTL =
WT/R,

(1)
where

M = signal of the mutant test gene
WT = signal from the wild-type test gene

R, = signal from the reference gene co-transfected with
the mutant test gene

R, = signal from the reference gene co-transfected with
the wild-type test gene

From a total of 129 mutants obtained with mutations
between —101 and +20, 117 were used as the network
training data set and the remaining 12 were used as the test
data set.

Data representation

The input data, which consisted of the 3-globin promoter
sequence with appropriate mutations, have been coded in
binary, similar to that used by Borries and Guangwen
(Demeler and Zhou, 1991), called CODE-4 (0001 = C,
0010 = G, 0100 = A, 1000 = T). The target to each input
sequence was the RTL (normalized) corresponding to
each mutant.

Neural network simulation

The neural network simulations were performed on a 386
AT equipped with a maths coprocessor. A network
training programme which featured a multilayered feed-
forward type network has been developed in FORTRAN
and used for simulation purposes (similar to the one
previously used: Nair et al., 1994). The neural network
architecture is shown in Figure 1. The network consist of
three layers: input, hidden and output. The number of
neurons in the input and output layers are defined by the
problem being studied. However, there is no easy way to
assign a fixed number of neurons to the hidden layer,
which is responsible for internal representation. Network
training is done in two stages called the forward and
reverse pass.

In the forward pass, the output of each neuron is
computed as the weighted sum of its inputs passed
through a non-linearity; however, the neurons in the
input layer are simple distributive nodes, which do not
alter the input value at all. In the reverse pass the network
adjusts the connection strengths between the neurons
using the generalized delta rule. The EBP algorithm with
momentum term, which has been used for training the
network, attempts to minimize an objective function,
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Fig. 1. Architecture of error back-propagation neural network used in the simulation: 484 neurons in the input layer, one hidden layer consisting of eight
neurons, and one neuron in the output layer. The trained network approximates y = f(.x), where x and y represent the input and output.

namely the summed squared error, defined as:
E= Z E,= Z Z(tpl- — outnetl,,-)2 (2)
P P i

where the index p ranges over the set of input patterns; /
ranges over the set of output units; £, represents the error
on pattern p; i, is the target and outnet,, is the actual
output of the ith output unit when pattern p has been
presented. When the summed squared error falls below the
prescribed threshold, the network is said to be trained and
the coverged weights can be used for predicting the
outcomes of the test data. The training process can be
externally controlled by adjusting the two parameters,
namely the learning rate and the momentum factor. The
details of computations have been described by others in
recent papers and monographs (Rumelhart er al., 1986;
Rumelhart and McCleliand, 1986; Zupan and Gasterger,
1991, 1993).

Trajectory plots of the upstream region

The piots in Figure 3 were obtained using the Curvature
programme (Shpigelman er al., 1993), a generous gift from
Drs E.N.Trifonov and E.Shpigelman. The programme
uses the nearest-neighbour wedge model to calculate
overall DNA path using local helix parameters: helix

twist angle, wedge angle and direction (of deflection)
angle. All the parameters were estimated from gel
electrophoretic data (Bolshoy er al., 1991). All the
fragments have been projected on the same plane.

Results and discussion

We have analysed the transcriptional control signals of a
eukaryotic protein-coding gene with a view to establish a
relation between the site of mutation and its relative
importance in the process of eukaryotic gene transcription
using a modelling approach. Earlier studies on the effects
of promoter substitutions on transcription of the mouse
J-major globin gene were determined by transfecting the
cloned mutant genes into HeLa cells on plasmids
containing an SV40 transcription enhancer, and measur-
ing the levels of correctly initiated -globin transcripts
after 2 days. These studies revealed that muation in three
regions, namely the CACCC-box, located between —87
and —95, the CCAAT-box. located between —72 and —77,
and the TATA-box, located between —26 and —30 relative
to the transcription start site, decreased the level of
transcription. While mutations in nucleotides immediately
upstream from the CCAAT-box resuited in a 3- to 3.5-fold
increase in transcription. These results corroborate the
fact that the nucleotide sequences also carry other
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Table 1. Network-predicted values of the relative transcription level

Mutation Experimental RTL Network-predicted RTL
-101 C-T 0.93 0.99008
—87 C-A 0.41 0.48265
-81 A-G 0.98 0.96633
—-65 C-T 1.10 1.13651
—63C-T 0.99 0.90017
-8 T-C 0.96 0.98198
-54 G-T 0.95 1.03684
-42 C-A 1.01 1.00160
-38 G-A 1.12 1.04128
-35G-A 1.11 1.04421
-32C-G 1.09 0.92708
-27 A-G 0.40 0.49693
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Fig. 2. Error profiles of training and test data set.

information in addition to the triplet code which are the
instructions for protein synthesis (Nirenberg et al., 1963;
Sepyer et al., 1963).

If we assume that majority of transcription control
signals are encoded in the upstream sequences, then the
analysis of these sequences should reveal valuable
biological information. In order to decipher these signals
a neural network has been used to capture the internal
representation of these sequences. A net with 484 neurons
(sequence length x 4} in the input layer, eight neurons in
the hidden layer, and one neuron in the output layer has
been used for training purposes. The network in its
training phase was presented with 117 patterns. After
every epoch, which corresponds to the presentation of all
the 117 training patterns once to the net, the weights were
extracted and used for predicting the outcomes of test data
set containing 12 patterns. The number of neurons in the
hidden layer which gave best approximations has been
found to be eight. However, using nine neurons or more
did not increase the prediction capability of the net. while
fewer than eight neurons in the hidden layer hampered
its prediction capability. The momentum term was
optimized to 0.9 and the learning rate to 0.6. The
error profiles of the training and the test data sets
corresponding to the optimized network parameters are
shown in Figure 2. The weights after 4194 epochs
corresponded to the minimum error with respect to the
test data set, and hence were taken as optimal. Further
training, however, did not improve the prediction
capability. The results of the predictions are shown in
Table I. It is noteworthy that the network-predicted
outputs (RTLs) provide a good fit to the experimental

RTL wvalues (correlation coefficient > 0.95). The dif-
ference in the network-predicted output and the experi-
mental value of RTLs can be accounted for by assuming
that additional signals which may also play a role in
regulation of transcription may be encoded in other cis-
and trans-acting factors, are not presented to the net. The
data set chosen for testing the generalization capability of
the net contained mutations spanning almost the entire
upstream region, namely —101 to —27, and was not part of
the training data set. We would like to emphasize here that
the test data set so chosen also contained signals which
resulted in both low (-~87C-A. RTL = 0.410; —27A-G.
RTL = 0.40) and high (-=101C-T, RTL 0.930, —38G-A.
RTL = 1.1201) levels of transcription. There was no
significant change in the prediction capability of the
network with different sets of test and training data. The
ability of the net to predict both high and low levels of
transcription with a very good degree of accuracy
essentially points to the fact that the net in its training
phase has learned to recognize the signals associated with
the upstream region and decipher it in a manner
analogous to that by RNA polymerase during the process
of transcription.

The trained and validated neural net was then used as a
heuristic device to predict the RTL in the case of hitherto
unknown mutations associated with the 3-globin
promoter. The results of the simulations are shown in
Figure 4. Tt is known from earlier studies (Myers et al.,
1986) that two different mutations in nucleotides upstream
from the CCAAT-box (—79G-A, RTL = 3.5: —78G-A.
RTL = 2.9) resulted in a 3.0- to 3.5-fold increase in
transcription. Our simulation result verifies this fact. In
addition, the results of our simulation obtained by
mutating these positions by C and T also indicate an
increase in the level of transcription (—79G-C, RTL =
2.043; —79G-T. RTL =2.090; —78G-C, RTL = 1.276;
—78G-T, RTL =1.713), a fact that has not yet been
reported in the experimental study. These positions
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Table II. Simulated RTL values in the case of mutation in the conserved
regions

Mutation in the CACCC box (-95 to —87)

*  —95G-T 0.19 * —95G-A 0.14 —-95G-C  0.31
¥ —94C-T  0.23 —94C-A  0.39 —94C-G  0.39
¥ —93C-T 0.27 * —93C-A  0.25 -93C-G  0.69
—92A-T 0.94 —92A-G 0.76 —92A-C  0.66
-91C-T 044 —91C-A  0.11 -91C-G  0.30
-90A-T 0.24 * —90A-G 0.26 —90A-C  0.25
-89C-T 1.14 —89C-A  0.86 —89C-G 103
—83C-T  0.30 * —88C-A  0.26 ¥ _88C-G  0.87
—87C-T 0.36 * —87C-A 048 * —87C-G  0.92
Mutation in the CCAAT box (—77 to —72)
-77C-A 0.36 ~77C-T  0.08 ¥ _77C-G 0.10
—-76C-A 0.30 —-76C-T  0.79 ¥ =76C-G 0.19
-75A-C  0.26 —75A-T  0.34 —75A-G  0.12
—-74A-C  0.81 —74A-T 0.34 ¥ —T4A-G  0.33
—73T-C 043 * —73T-A  0.22 -73T-G 0.38
—72C-A  0.71 ¥ _T72C-T  0.17 -72C-G  0.55

Mutation in the TATA box (-30 to —26)

* —30T-A  0.37 —30T-G 0.77 * 0 =30T-C 0.37
—29A-T 0.93 * -29A-G 0.51 —29A-C 0.79
-28T-A  0.95 —28T-G  0.65 —28T-C  0.66
—-27A-T 043 ¥ 227A-G 0 0.50 —27A-C  0.52

26A-T 0.74 ¥ —20A-G  0.355 —26A-C  0.64

Astenisks denote the mutations that were part of the training data set.
Mutations within the conserved region which showed little or no effect on
the amount of transcript formed are shown in bold type.

correspond to the region just upstream of the CCAAT-
box. Earlier studies on base substitution in these region in
promoters of the herpes virus tk gene and 3-globin gene
(mouse rabbit) have also shown an increase in the level of
transcription (see Table II, Myers et al., 1986). This
further adds credence to the simulation results obtained by
the network. Furthermore, simuiation studies on the three
highly conserved regions show that not all mutations in
these regions decrease the level of transcription as is
generally believed (based on the available experimental
results). Table II summarizes the simulation results of all
the possible mutations in the three conserved regions (—87
to =95, CACCC-box; —72 to —77, CCAAT-box; —26 to
—30 TATA-box). The mutations in these regions which
did not seem to affect the efficiency of transcription
significantly are in bold type. It can be seen that in certain
instances even a marginal increase is observed. Thus the
simulation results in general give us an intuitive under-
standing of the relative importance of certain sequence
elements in the process of transcription, within the
conserved region and upstream region.

The relationship between DNA curvature and tran-
scriptional activity in vivo has been suggested in a number
of cases (Perez-Martin et «l., 1994). Aithough most of
them are in prokaryotic systems, the same could hold true
for eukarotic systems as well (Kerppola and Curran,

1991a.b). A mutation in the upstream region in structural
terms means a change of a dinucleotide ‘wedge’. Since
DNA curvature is facilitated when a dinucleotide residue
occurs in phase with the B-DNA helical repeat (10.5bp/
turn), a mutation could alter the superstructure either by
severing curvature, or by contributing to it. The super-
structures associated with the upstream region were
investigated by calculating the DNA path using the
Curvature programme (Shpigelman er al., 1993). The over-
lap of the DNA axis (a curve passing through the centre of
the base pairs) in the case of mutations which resulted in
very high and very low levels of transcriptional activity are
shown in Figure 3. The analysis reveals that a change in
the superstructure results in the alteration of transcrip-
tional activity. However, it has also been observed that
two similar superstructures may give rise to different levels
of transcriptional activity. The results point to the fact
that the network is able to capture this relationship
between superstructure and transcriptional activity.

At this point it is important to realize the difference
between human language and DNA language. The DNA
language permits the sequences to encode one or more
additional messages. Only few words in the human
language can imitate the overlapping of message (as
exemplified by Trifonov, 1989). The string ‘togetherno-
where” can be read in four different ways: ‘together

0.185

0.105

2.043

2.090

ey —79G-4 3.473

: C=77C-T 0.080
sonne =760-6G 0.186
sevne =754—6G 0.120

soeae —720=-T 0.174 )
~~~~~ Wild type without mutation

Fig. 3. Overlap of the DNA axis of the upstream region calculated using
the Curvaturc programme. It is the curve passing through the centre of
the base pair (sce Shpigelman ez al., 1994).
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Fig. 4. Simulated values of RTLs for all possible single base substitution in the J-globin promoter obtained by using the converged weights.

nowhere’, *together now here’.*To get her now here’ and *To
get her mnowhere’. Neural networks are capable of
capturing all the possible messages hidden in such an
input. They can approximate linear as well as non-linear
dependencies and also possess a strong capability of class
separation (Gallinari er al., 1988; Asoh et al., 1990; Webb
and Lowe, 1990). Thus the net in the present case has been
able to capture all the overlapping messages contained in
the upstream region which act as signals in the process of
transcription. It is worth mentioning here that the
eukaryotic transcription is a complex phenomenon
which involves an interplay of many factors (proteins)
which are not represented in the input. The ability of the
network to capture overlapping messages and the results
of our in computo experiments, evinces the presence of
different overlapping signals in the upstream region of the
gene that dictate the process of transcription by way of
communicating with the many different factors involved.
The property of the sequence to encode multiple signals
may be thought of as the activity associated with that
sequence. Thus it is seen that neural networks are also
capable of establishing the sequence—activity relationship.

The ANN model was built using mutation data
obtained by saturation mutagenesis of cloned DNA
fragments (Myers er al., 1985). The resulting duplex
DNA fragments obtained using this method contain
random, single base substitutions. In general it is not
possible to direct mutation to a particular site using this
procedure. In order to obtain a desired mutant, one would
have to resort to site-directed mutagenesis (Zoller and
Smith, 1982). However, the ANN model that we have built
can be used to predict the expression of hitherto unknown
mutations. Thus the model also serves as a tool to design
mutation experiments.

It is further important to realize that the model is not
intended to replace laboratory work, but should be used
only as a guide in designing experiments. The results of the
predictions are purely theoretical and should be subjected
to experimental validation. Furthermore, since the
training data set contained a majority of single base
substitutions, the ability of the network to predict the
outcomes of double mutations or more could not be
ascertained. Moreover data of this kind are scarce.

In conclusion, we would like to state that, although it is
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a well-established fact that the nucleotide sequences, apart
from carrying the triplet code, also carry other informa-
tion in the form of the sequence pattern. an approach like
ANNGs can be used in the identification and quantification
of such patterns. The simulation results point to the fact that
the model can be used in the identification of important
sequence elements within conserved regions. The results
presented here also establish a sequence—activity relation-
ship. It also underlines the use of a modelling approach in
determining the extent of functionality associated with a
particular regulatory region. Finally, we would like to
suggest that there are many more messages that are lying
buried in the sequence and are waiting to be deciphered.
Neural networks can be used as tools in decoding these
DNA Morse codes. ANNs may not provide a direct
solution to the problem but would facilitate in eliminating
unnecessary sidetracks, and thus would assist in providing
valuable insights into the fundamental mechanisms.
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