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A B S T R A C T

Preeclampsia is a pregnancy associated disease. It is characterized by high blood pressure and symptoms that are
indicative of damage to other organ systems, most often involving the liver and kidneys. If left untreated, the
condition could be fatal to mother and baby. This makes it important to delineate the complexities associated
with the disease at a molecular level that would help develop methods for early diagnosis. In microarray-based
studies, Textoris et al. and Mirzakhani et al. have analyzed the transcriptome with a view to identify biomarkers
for preeclampsia. The current study has extensively analyzed these microarray data sets to understand the
complexity and heterogeneity associated with preeclampsia. A statistical multiple comparisons-based approach
has been used to identify features capable of distinguishing preeclampsia from normotensive cases. These fea-
tures were then used to build an artificial neural network-based machine learning model that successfully
classified the samples. Further, the machine learning model was used to delineate features critical for its internal
representation by extending the calliper randomization approach to the analysis of microarray data. Functional
analysis of the features identified by the calliper randomization approach revealed pathways that could be
crucially involved in the mechanism of the underlying disease. Biological processes associated with the features
identified have revealed among others, genes involved in reproductive processes to be differentially expressed.

1. Introduction

Placental disease of preeclampsia (PE) is defined by the onset of
hypertension and proteinuria or dysfunction of major organs due to the
onset of hypertension after 20 weeks of gestation (Chaiworapongsa
et al., 2014a,b; Ngoc et al., 2006; Young et al., 2010). It is estimated
that between 3 and 5% of all pregnancies are affected globally by PE.
Further, it is alarming that 40–60% of maternal mortality has also been
attributed to PE (Ngoc et al., 2006; Young et al., 2010). In the United
States, PE accounts for 20% of maternal mortality (MacKay et al.,
2001). It is unclear what factors contribute to PE. Studies show that
∼7.5% of healthy nulliparous women may be affected, and multiparous
women pregnant with a new partner could also have an elevated risk of
PE comparable to nulliparous women (Tubbergen et al., 1999). Genetic
predisposition to PE has also been found to be significant (Barton and
Sibai, 2008). Preexisting morbidities that are associated with increased
PE risk include chronic hypertension, diabetes mellitus, and blood
clotting disorders (Barton and Sibai, 2008; Duckitt and Harrington,
2005).

The etiopathogenesis of PE has been explained using a hypothesized

two-stage theory (Roberts and Hubel, 2009). Briefly, according to this
theory, poorly profused placenta causes hypoxia (stage 1) resulting in
the release of soluble factors such as reactive oxygen species, pro-in-
flammatory cytokines and antiangiogenic factors into the maternal
circulation. This then leads to the clinical manifestation of PE (stage 2).
In a metaphoric view of PE, pregnancy was considered akin to a car
with accelerators and brakes (Ahmed and Ramma, 2015). The accel-
erators in this case were inflammation, oxidative stress and an anti-
angiogenic state, while the braking system were the protective path-
ways, haem-oxygenase-1 (Hmox1) and cystathionine-γ-lyase (CSE).
Failure of the protective pathways (brakes) that control the accelerators
results in the manifestation of PE. The imbalance between vasodilation
and vasoconstriction due to the soluble factors released into the ma-
ternal circulation possibly creates a condition of endothelial dysfunc-
tion and may persist after delivery. Another aspect, immunological
dysfunction, has also been shown to play an important role in PE
(Redman and Sargent, 2010; Cheng and Sharma, 2016; Rademacher
et al., 2007). It is now an established fact that there is a complex in-
terplay between the maternal immune system and placenta (Cheng and
Sharma, 2016), but it is still unclear when these immunological
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alternations begin. It has been hypothesized that dysregulated systemic
and placental immunity may play a role in the onset of PE (Cheng and
Sharma, 2016).

It is becoming increasingly clear that PE is a multifactorial condition
that is genetically and immunologically governed. PE is also hetero-
geneous in its presentation, making it challenging to diagnose as well as
to identify biomarkers (Cuffe et al., 2017). Given the risk associated
with PE, biomarkers that can predict PE would allow for improved and
timely intervention and prevent adverse outcomes. Earlier attempts to
identify biomarkers have had limited success. Some of the potential
biomarkers identified, viz. soluble endoglin, soluble vascular en-
dothelial growth factor receptor and placental growth factor, were not
able to successfully predict early PE (McElrath et al., 2012; Widmer
et al., 2015). Since maternal symptoms of pregnancy are caused by
factors released by placenta, they could potentially serve as diagnostic
or predictive markers. However, none of the biomarkers identified thus
far have been found to be clinically useful (Cnossen et al., 2005). This
may be because of the complexity of association among the factors, and
the methods used in their identification are unable to capture these
complex cross associations. This is the problem that this paper attempts
to explain using data sets from studies by Textoris et al. (2013) and
Mirzakhani et al. (2016).

In the current study, the microarray data sets that were used to
identify biomarkers for PE have been exhaustively analyzed both sta-
tistically, and by using a machine learning-based method. A simple
approach capable of identifying possible features contained in data
harboring complex correlations is presented. Functional analysis of the
theoretically identified features is also presented.

2. Materials and methods

2.1. Microarray data

Microarray data generated by Textoris et al. (2013) was one of the
data sets used in this study. The data is publicly available from NCBI
gene expression omnibus (GSE48424). Briefly, the data consisted of
blood RNA levels from 38 women that were part of their study: 19
patients with PE and 19 normotensive (NT) women selected based on
age, weight, smoking status, race, gestational age and blood pH. Among
the 19 patients with PE, 6 women were categorized as non-severe PE
(nsPE) and 13 women as severe PE (sPE). The study had used a 4X44K
Whole Human genome microarray G4112F chip manufactured by
Agilent Technologies and followed the gene expression analysis method
described in Thuny et al. (2012). For further details regarding the data,
please refer to Textoris et al. (2013). In addition, the transcriptomic
data generated as part of the Vitamin D antenatal asthma reduction trial
(VDAART) was also analyzed (Mirzakhani et al., 2016). The gene ex-
pression data (GSE85307) in the VDAART study was profiled using
Affymetrix GeneChip Arrays “Affymetrix Human Gene 1.0 ST Array”.
The data constituted expression profile of 47 patients with PE and 110
normotensive cases.

2.2. Feature selection using statistical method

A statistical multiple comparison-based method was used to com-
pare the expression values (Westfall, 1997). Comparing the differences
in two population means may be achieved using an interval estimation
or hypothesis testing approach, but comparison of several means can be
done by ANOVA F-test. However, ANOVA F-test only provides in-
formation on whether the difference between the two means is sig-
nificant. In order to obtain information on which means were different,
one must resort to multiple comparison (see Fig. 1). The multcomp R
package was used in the multiple comparison of the data (www.r-
project.org). Exhaustive comparisons within and between the classes
were carried out. Following the exhaustive comparison of expression
levels from each probe, a unit score was given to each significant

difference. Sums of scores were used to rank the probes. In case of the
Textoris et al. data set (GSE48424), the samples were classified either as
two classes (binary) or four classes (multiple). In the binary comparison
analysis of the data, the categories of nsPE and sPE were clubbed into
one group as PE and compared with NT. The features that were found to
be significant were used for further analysis. In order to facilitate ex-
haustive comparison within and between each class of samples, each of
the classes were further randomly divided as PE1, PE2, nsPE1, nsPE2,
NT1 and NT2. This permitted within-class comparison and helped to
understand the heterogeneity associated with the data.

In case of the VDAART transcriptome data set (GSE85307), the
samples were classified as PE or NT. To delineate heterogeneity, within-
class comparisons were done similarly. PE and NT samples were ran-
domly divided into two sets each, PE1 and PE2, and NT1 and NT2. The
samples that belonged to the same class (PE or NT) were then compared
to each other.

2.3. Extracting complex features using artificial neural network-based
calliper randomization approach

Artificial neural networks (ANNs) were conceptualized aspng
mathematical models for the biological synapse (Rumelhart et al.,
1986). ANNs are organized as a layered connected structure (see Fig. 2).
Each layer consists of a number of simple computational units called
neurons. The number of neurons in the input and output layer is dic-
tated by the problem, but the number of neurons in the hidden layer
that is responsible for capturing the nonlinearity is variable, and can be
optimized for the problem at hand. Neurons in each layer communicate
with the neurons in the following layer through variable weight con-
nections where the learned information is stored. ANNs were trained
using a supervised learning algorithm called “learning by back-propa-
gation of errors” (Rumelhart et al., 1986).

Artificial neural network models were built to classify microarray
data as PE or NT using the features obtained from the statistical analysis
as discussed in section B. Models were built using the R package
(RSNN). The learned information is stored as weight connections, but
they do not reveal anything about the system being modeled. However,
the powerful internal representation capability of neural networks was
exploited to identify key features that were important for class se-
paration. This was achieved by using a calliper randomization approach
(Nair, 1997). Briefly, a calliper window of randomized input is pre-
sented to a trained model and the loss in prediction capability is used to
score the features. The greater the loss in prediction, the more im-
portant are the features contained within the calliper window. Calliper
windows of different sizes were used to delineate the features con-
sidered most important for recognition.

2.4. Functional analysis

Functional analysis of the features identified by the ANN-based
calliper randomization method was done with the help of the
Bioconductor packages clusterProfiler and ReactomePA, that uses Gene
Ontology (GO) and the Reactome pathway database respectively (Yu
et al., 2012; Yu and He, 2016).

3. Results and discussion

3.1. Multiple comparison of PE and NT

Exhaustive comparison of all probes in the data set GSE48424 were
carried out between PE and NT in a between-class comparison. The
samples from nsPE and sPE were combined into one class, PE, and
compared with NT. The results of the comparison revealed that 2516
(6.13%) features had significantly different expression levels between
PE and NT. This reveals a larger number of possible candidate bio-
markers than originally reported (Textoris et al., 2013). Fig. 1 shows
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the multiple comparison between PE and NT. The plot shows the probes
whose expression levels were significantly different between PE and NT
samples. Significant difference is indicated by the fact that the intervals
did not intersect the zero line. In the interest of brevity, a small subset
that showed a significant difference between PE and NT is plotted. If the
features obtained using multiple comparison are significantly different
between the two classes, then they should be capable of class separation
using standard clustering methods. Fig. 3 shows the hierarchical clus-
tering and biplot-principal component analysis using the extracted
features. Hierarchical clustering was done using Cluster 3.0 (Eisen
et al., 1998). The features were able to cluster the two classes; however,
there were five samples that were incorrectly classified (sPE10, nsPE5,
sPE11, sPE12, and NT9). Biplot PCA analysis was used to understand
the overall structure of the features. Positive and negative correlations
in expression are taken into account in a PCA analysis. The length of the

arrow is a representation of the variance in the data for that sample.
The angle between the vectors represent the correlation between the
samples. Positively correlated samples have zero degree angle between
them, while those with negative correlation are separated by 180 de-
grees. Samples that are orthogonal have no correlation between them.
The biplot analysis shows that the PE and NT samples, while clearly
different from each other, have significant spread between them. It is
noteworthy to point out that the PE samples that were incorrectly
clustered in hierarchical clustering also tend to be more similar to NT
samples, as inferred from the PCA analysis. Further, the biplot analysis
also helps to understand the differences between and within PE and NT
samples. It is clear that there is significant heterogeneity with PE and
NT samples which was also noted by Textoris et al. (2013). This makes
it a challenge in identifying unique biomarkers capable of correctly
distinguishing PE and NT. Further, none of the protein serological
biomarkers that were delineated using a multiomics approach (Liu
et al., 2013) were part of the features identified. This further under-
scores the complexity and heterogeneity of the underlying disease and
the challenge in identifying a specific biomarker as a common de-
nominator.

With a view to further understand the heterogeneity and variation
due to samples, within- and between-class comparisons were carried
out after dividing the samples as discussed in material and methods
section. Table 1 gives the percentage of features that were differentially
expressed in a within- and between-class comparison. It is interesting to
note that the NT samples were more homogeneous than the nsPE and
sPE samples. In total, there were ∼2200 features that were differen-
tially expressed between nsPE and sPE. This clearly points to the fact
that there is a significant heterogeneity within the PE samples, thus
making the identification of unique biomarkers extremely challenging.
It also adds to the complex interplay that exists within the tran-
scriptome that makes the identification of biological signatures for the
disease more difficult using simple statistical methods. A machine
learning method like artificial neural networks that are capable of
capturing complex correlations from the data may potentially be more
useful in understanding the complexity associated with the tran-
scriptome.

Fig. 1. Multiple comparison of expression levels for a subset of probes that showed significant difference between PE and NT samples.

Fig. 2. A general three-layer fully connected artificial neural network.
Expression values of the features identified using the multiple comparison
method were presented as input and the output was either 1 (PE) or 0 (NT).
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3.2. Artificial neural network-based analysis of the features identified from
the GSE48424 data set

Using the features that were found to be significant in the multiple
comparison analysis, a three-layer neural network model was built to
distinguish PE from NT. All the 2516 features obtained from the sta-
tistical analysis were presented to the network as input with one hidden
layer consisting of 15 neurons. The data set were partitioned into
training (85%) and test data sets (15%). The test data sets were not
presented to the neural net at the time of training and was used to
evaluate the performance of the trained model. The network was cap-
able of learning and classifying the features as belonging to PE or NT
classes. Fig. 4 shows the progressive decrease in error as the network
learned the patterns from the data. The neural network was clearly able
to generalize the patterns as both the training and test error profiles
were monotone decreasing. The ROC curves for training and testing
data sets are shown in Fig. 5.

The network model was able to successfully classify all the test data
to their respective classes indicating that the network was able to learn
the patterns of gene expression that distinguished the two classes.
However, a network model being a black-box model is incapable of
providing information on which features are relevant in the classifica-
tion process. It is noteworthy to mention that neural networks are
capable of capturing second and higher order correlations from data.

With a view to capture the features that are considered important in

the classification process by the neural network, the calliper randomi-
zation approach (Nair et al., 1995; Nair, 1997) first introduced by the
author in the analysis of sequences was extended to this analysis. Noise
was introduced into a calliper window of input features and then pre-
sented to the trained network model to assess the prediction capability
of the model. The loss in prediction capability of the network model
was used as a measure of the relative importance of the features con-
tained in the window for classification. In effect, the approach helps in
opening up the black box of the neural network model and provides an
insight into the pattern recognition process of a machine learning
model. Fig. 6 shows the calliper error associated when calliper windows
of different sizes are randomized. The larger the error, the more re-
levant are the associated features. Features that emerged as relevant in
the analysis were further analyzed for biological significance.

3.3. Functional analysis of features

In total, 1856 features were identified as relevant by the machine
learning method. These were further filtered for annotation and probes
querying the same gene. The resulting 1303 features were analyzed for
biological relevance. The GO database was used to characterize these
genes using the clusterProfiler package (Yu et al., 2012; Gene Ontology,
2015; Ashburner et al., 2000). The feature sets were analyzed for the
molecular function, biological processes and cellular components. The
molecular function analysis using GO revealed that the features be-
longed to four categories. These were ubiquitin-like protein ligase
binding, ubiquitin protein ligase binding, protein transported activity,
and phosphatidylinositol bisphosphate phosphatase activity. The bio-
logical process category analysis using GO revealed that the feature sets
contained at least 23 different biological processes. The biological
processes associated with the features are summarized in Fig. 7. Cel-
lular component analysis of the identified features revealed that a dis-
parate set of components were associated with the features. The cellular
components associated with the features are summarized in Fig. 8. It is
interesting that one of the categories of biological processes associated

Fig. 3. Cluster analysis and biplot PCA using the extracted features. Features incorrectly clustered are pointed to by ↑.

Table 1
Within- and between-class comparison of differentially expressed features.

NT1 NT2 sPE1 sPE2 nsPE1

NT2 65
sPE1 277 1209
sPE2 206 26 143
nsPE1 1274 695 411 303
nsPE2 1319 670 651 867 512
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with the features identified is vesicle organization. Vesicle organization
may play an important role in the resolution of inflammation pathways
(Perucci et al., 2017).

There are several possible mechanisms that may be responsible for
the pathogenesis of preeclampsia (Young et al., 2010). While it is im-
portant to understand the association of the features with respect to the
cellular components and biological processes they may be associated
with, it would be crucial to delineate the pathways involved, and un-
derstand how they may be interrelated. The pathways associated with
the features identified were delineated by querying the Reactome
pathway knowledgebase using the ReactomePA Bioconductor package
(Fabregat et al., 2016; Yu and He, 2016; Croft et al., 2014). The results
of the analysis reveal that features identified are associated with several
pathways that were already known to play an important role in pre-
eclampsia. For instance, it has been found that the preimplantation
factor (PIF) protein levels in placentas from pregnancies affected by
preeclampsia or intra-uterine growth restriction had significantly lower
levels of PIF. It is also known that PIFs’ effect on placental apoptosis is
mediated by TP53 (Moindjie et al., 2016). Several of the features
identified have been associated with the TP53 pathway. Pathways are
not isolated entities, and studies on complexities in biological systems
have revealed that different pathways have synergistic effects on each
other. UpSet is a convenient way to visualize the possible interaction/
association between pathways (Lex et al., 2014).

Fig. 4. Error profile of training and test data set.

Fig. 5. ROC curve showing the performance of the neural network model.

Fig. 6. Calliper errors for varying window sizes (50, 100, 150, and 200). Peaks correspond to regions important for the network in its internal representation.
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Fig. 9 shows the pathways associated with the features and the
different interactions. The bar graph depicts the number of genes in-
volved. One of the pathways that stands out is the TRIF mediated TLR3/
TLR4 signaling. Toll-like receptors (TLRs) are transmembrane proteins
that constitute a family of pattern recognition receptors. These are
shown to be involved in innate immunity that is responsible for dis-
tinguishing infectious non-self and non-infectious self (Medzhitov and
Janeway, 2002). Innate immune response at maternal-fetal interface is
crucial for the success of pregnancy (Koga et al., 2014).

4. Analysis of the VDAART transcriptome

With a view to gain an insight into the complexity of the molecular
nature of preeclampsia, the VDAART transcriptome was analyzed spe-
cifically to understand heterogeneity and to determine if the features
identified from the GSE48424 data set were capable of differentiating
preeclampsia and normotensive cases in the VDAART GSE85307 data
set (Mirzakhani et al., 2016).

The features identified from the analysis of the GSE48424 data set
were compared to features in the VDAART data set (GSE85307) using
BioMart (Durinck et al., 2009). All of the features did not have a one-to-
one correspondence since the technologies used in generating the

transcriptome were different. However, it was possible to map 2245
features, but since the features were not exactly the same, it was not
possible to test the performance of the artificial neural network model
built using features from the GSE48424 data set using mapped features
from the VDAART data set. Thus, an entirely new neural network model
was trained using the mapped features. It is noteworthy to point out
that these were mapped features as opposed to features identified using
feature selection methods. The neural network was only able to classify
60% of the samples. This further points to the heterogeneity associated
with preeclampsia. Thus, it was necessary to identify and study the
differential expression to delineate features from the VDAART data set.

4.1. Feature selection using multiple comparison and neural network
modeling of VDAART transcriptome

Exhaustive analysis of the VDAART transcriptome (GSE85307) was
done similarly using the statistical multiple comparison method pre-
viously described. The exhaustive analysis revealed that there were 262
features that were significantly different. Even from this data set, none
of the features identified using a multiple comparison method were part
of the serological protein markers identified by Liu et al. (2013). This
again suggests that there is significant heterogeneity with the

Fig. 7. Biological processes associated with features obtained by GO analysis.

Fig. 8. Cellular components associated with the features obtained by GO analysis.
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underlying molecular basis of the disease and the feature sets need to be
analyzed to delineate complex correlations. Towards that, these 262
features were used to build a neural network model to distinguish
preeclampsia from normotensive cases. The ROC curves for training
and test data sets are shown in Fig. 10. While the network was able to
accurately classify all the training data sets, not all of the test data sets
were correctly classified (AUC=0.908). The trained model was then
used to delineate features that exhibited higher-order correlations by
using the calliper-randomization approach. Fig. 11 shows the regions
that were considered important by the model for pattern recognition.

To understand the inherent variability, the samples were further
analyzed to delineate the within-class variability associated with the
VDAART transcriptome data. The preeclampsia and normotensive data
sets were analyzed separately by randomly dividing each of the two
classes further into two groups. The two randomly divided groups that
belonged to the same class (PE or NT) were compared with each other.
Thus, by comparing two random groups of PE with each other, it was
possible to determine the extent of variability within the PE class. The
same was true for the NT class. The results showed that there were 347
features that were significantly different within PE and there were 397
features that were significantly different within NT.

Functional profile of the 261 features obtained using multiple
comparison was done using gene ontology. Fig. 12 shows the different
biological processes associated with the features. These results not only
reveal commanalities with the processes identified by Mirzakhani et al.
(2016) but also reveal that genes involved in reproductive processes

Fig. 9. Association between pathways obtained from reactome pathway knowledgebase.

Fig. 10. ROC plot of the performance of the neural network model using the features from the VDAART data set.

Fig. 11. Calliper errors for window of size 25. Peaks correspond to regions
important for the network in its internal representation.
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were also part of the 261 features. The genes included PARK7, TSSK3,
and DIAPH3. It is noteworthy to point out that PARK7 also known as
DJ-1 is known to have a putative role in oxidative stress and hypoxic
change and has been shown to have elevated expression in patients
with severe preeclampsia (Kwon et al., 2013). CHFCR5 gene grouped as
part of the immune system process has also been known to demonstrate
differential methylation of its promoter and has been noted to be a gene
of interest in preeclampsia (Ching et al., 2014).

5. Conclusion

Statistical and artificial neural network analysis of preeclampsia
transcriptome (GSE48424 and GSE85307) revealed that there are fea-
tures that are distinct to preeclampsia in each case. The within- and
between-class comparison of the features from the data sets revealed
that there are features within the same class that may show differential
expression. This could account for the challenge in identifying unique
features that are capable of distinguishing preeclampsia from normo-
tensive cases. Further, using the ANN-based calliper randomization
approach, it was possible to identify a subset of features that were
critically important for imparting knowledge to the network model.
While these were not experimentally verified, functional analysis using
GO and the reactome pathway knowledgebase revealed that the fea-
tures identified were associated with biological processes and pathways
that were known to be important in disease development. However, the
features that were identified from each data set were distinct and thus
any conclusion about using a particular feature as a biomarker must be
done with great caution and by taking into consideration the hetero-
geneity that exists within populations, as well as the plurality of mo-
lecular disruptions that could result in an underlying disease.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.compbiolchem.2018.05.
011.
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