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Abstract Biology has become a data driven science largely due to the technological 

advances that have generated large volumes of data. To extract meaningful 

information from these data sets requires the use of sophisticated modeling 

approaches. Towards that, Artificial Neural Network (ANN) based modeling is 

increasingly playing a very important role. The "black box" nature of ANNs acts as 

a barrier in providing biological interpretation of the model. Here, basic steps 

towards building models for biological systems and interpreting them using 

calliper randomization approach to capture complex information is described. 
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1 Introduction 

Biological systems are complex entities involving a myriad of interactions that 

regulate biological processes in ways that we are only beginning to understand. 

There has been an acceleration in our understanding of biological systems, and this 

has largely been due to technological advancements and large-scale initiatives that 

have generated a plethora of valuable biological data. 
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Biological data may be broadly categorized as genomic, transcriptomic, and 

proteomic data (omic data). Genomic data refers to genomic DNA sequences 

obtained using next-generation sequencing methods. Transcriptomic data refers 

to data that quantifies transcripts obtained either by RNA sequencing or from 

microarrays. Proteomic data refers to the distribution of chemical moieties 

contained in proteins obtained by mass spectrometry. In addition, biological data 

may also be structural. This includes structures of biological macromolecules (DNA, 

RNA and proteins) obtained by X-ray crystallography, NMR, or cryo-electron 

microscopy. All omic data may be obtained in a high-throughput manner, while the 

throughput of structural data is comparatively lower, several structural genomics 

projects have contributed to a significant increase in biological structural data. 

When studying a particular biological system, the conventional approach has 

been to propose a hypothesis [1], and then verify the hypothesis using supportive 

data–often termed a hypothesis-first approach. In the era of high-throughput data, 

approaching problems by harvesting large-scale data has significant advantages 

over a conventional hypothesis driven approach. This is because use of a data-

driven approach makes it possible to detect things one was not expecting to see 

[2] . An outstanding example of this is the identification of the fusion of the BCR 

gene located on chromosome 22 with the ABL gene on chromosome 9, from high-

throughput genomic data, even though it was known for decades that chronic 

myeloid leukemia patients had abnormalities associated with chromosomes 9 and 

22 [3]. The precise identification of BCR-ABL gene fusion led to the understanding 
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of the cause for the deregulated expression of the tyrosine kinase enzyme and to 

the development of imatinib that inhibits kinase enzyme [4-6]. This example clearly 

illustrates that, when studying biological systems, the quest has always been to 

identify the biological entity first and then understand what it does. Biological 

systems being complex, the task of identifying the entity responsible is never 

straight forward or simple. This is further complicated by the fact that biological 

molecules can act pleiotropically, and may simultaneously orchestrate changes in 

the behaviour of a large cohort of responder molecules to create an altered 

phenotype. Theoretically, this behaviour can be approximated as molecules 

exhibiting higher order correlations. Thus analysing high-throughput data to 

extract such information would help in generating computationally derived 

hypotheses. Artificial neural networks (ANNs) are a class of machine-learning 

methods capable of deriving such information. This chapter describes the steps 

involved in building ANN models for biological systems and interpreting them using 

a technique called calliper randomization —a technique that helps identify 

features that are important in imparting knowledge to the ANN during training. 

2 Methods 

ANNs were initially modelled as mathematical approximations of the biological 

synapse and were meant to model the human brain[7] . ANNs, however turned 

out to be very efficient in pattern recognition and have found more application as 

a pattern recognition machine, than as a means of explaining how the brain 
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functions. Building an ANN model for a system involves collecting relevant 

information about the system that can be used to generate a function that 

approximates its behaviour.  ANN models are built by presenting data associated 

with the system to be modelled to a network of computational units called artificial 

neural networks (Fig. 1). The network learns the pattern associated with the 

system being modelled by iteratively updating the weight connections between 

computational units called neurons. ANNs have been exploited extensively in 

analysing biological data. One of the main drawbacks of ANN models is that they 

are black-box models and do not reveal in a readily-interpretable form any 

information about the system being modelled.  However, it is possible to delineate 

the relative importance of features in imparting knowledge to the network using 

the calliper randomization approach that we will describe later in this chapter. 

2.1 Modeling a biological system using a neural network 

Modeling a biological system using an ANN begins by defining the system to be 

modelled and enumerating the variables that could explain the behaviour of the 

system. Biological systems being complex entities, it is unlikely that we will be able 

to account for all the variables that describe it, and hence only partial information 

is available to model it. For example, imagine the system being modeled involves 

building a model capable of distinguishing lung cancer types —adenocarcinoma 

(AC) and squamous cell carcinoma (SCC). While this problem can be approached 

from different angles, let us consider classifying them using their transcriptomes. 
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This reduces the problem as the variables are thereby limited to the 

transcriptomes of the two types of cancers. Their transcriptomes now serve as 

input features that are experimentally derived. Although not stated explicitly, we 

are hypothesizing that there exist features within the transcriptome that are 

capable of distinguishing AC from SCC. The transcriptomes are mapped to classes 

using an ANN that is indicative of the aforementioned types of cancers. The 

function/model that approximates this classification is the ANN model. An 

important first step to building an ANN model is to select a subset of features that 

is most relevant to be used as input to the neural net. Since transcriptomic data 

normally contains a very large number of transcripts (>50,000), the process can be 

very computationally intensive.  

2.2 Feature selection 

The main goal of feature selection is to distinguish relevant features from 

irrelevant ones. If the value of a feature in a tumor sample is significantly different 

from the value of the same feature in a normal sample, then that feature is likely 

to be relevant. Selecting features from transcriptomes involves testing the 

differences in expression between many means. This can be conveniently achieved 

by using multiple comparisons [8]. Comparison of two means may be achieved 

using routine statistical testing methods like interval estimation or hypothesis 

testing. Comparisons of several means can be done using ANOVA based methods. 

A key drawback of this approach is that it does not identify which means were 
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different; for this, we could use multiple comparison based methods. The 

multcomp package provides methods to conveniently analyze data using multiple 

comparison-based methods. Multiple comparison of a subset of features that 

show significant difference between AC and SCC is shown in Fig. 2. 

 When several different treatments are involved, it is possible to score each 

significant comparison and rank features based on their scores [9]. The feature 

selection approach that we have mentioned here is only one of several such 

methods [10, 11]. It is noteworthy that the methods used in feature selection need 

not be too stringent as neural networks are capable of handling noisy data. If the 

feature selection process is too stringent there exists a possibility of filtering away 

features that may be associated with the system through second and higher order 

correlations. The choice of the feature selection method used depends on the 

system being modeled and should be carefully chosen [12]. 

2.3 Model building 

ANN models can be conveniently built in R using the Stuttgart Neural Network 

Simulator (RSNNS)[13]. Building a neural network model involves presenting the 

selected features to an artificial neural network for training. The number of 

neurons in the input and the output layer is determined by the system being 

modeled; however, both the number of hidden layers, and the number of neurons 

in each hidden layer that captures the non-linearity of the system, are rather 
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arbitrary and need to be optimized for the system under study. Training involves 

iteratively changing the weight connections between neurons in a manner that will 

optimally map the input onto the output. In the example being discussed, the input 

would be expression values of a subset of features that were deemed to be 

significant by the feature selection process, and the output would be 1 for AC and 

0 for SCC. It is important to mention that the data used for developing a neural 

network model need to be divided into training and test data sets. The weight 

connections are adjusted based on the training data only. The test data set is used 

to determine the performance of the model and is never used to adjust the weight 

connections. A well-trained generalized model should perform optimally not only 

on the training data set but also on the test data set (Fig. 3). If the network is over-

parametrized by using too many hidden layers and neurons, the resulting model 

will only memorize the training examples and perform poorly on the test data sets. 

2.4 Evaluation neural network models 

The evaluation of neural network models is done using the de facto performance 

measures of sensitivity and specificity. In the example under discussion, sensitivity 

measures the correctly classified samples, while specificity measures the 

proportion of AC classified as SCC and vice versa. It is now routine to depict this 

information graphically using a receiver operating characteristics (ROC) graph [14-

16]. Briefly, ROCs are two-dimensional graphs in which the true positive (TP) rate 
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(sensitivity or recall) is plotted on the ordinate or Y axis, and the false positive (FP) 

rate is plotted on the abscissa or X axis. These are defined as follows: 

 𝑇𝑃 𝑟𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (1) 

𝐹𝑃 𝑟𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
                                    (2) 

The ROC curve helps determine the performance of the neural network model and 

reveals the percent of samples within a particular class that are correctly classified 

(true positives or "hits") as well as the ones that are incorrectly classified (false 

positives). In addition, the classification also generates true negatives (TN) and 

false negatives (FN) or "misses". Since these are complements of the others, they 

can be ignored when constructing ROC curves. These curves are bow shaped. They 

rise from the lower left corner, where both percentages are zero, to the upper 

right corner, where both are one hundred, with a sharp bend for a perfect classifier 

(Fig. 4). 

2.5 Calliper randomization for interpreting neural network models 

Neural network models are a "black box". This is a potential serious limitation 

when applied to systems where it is necessary to interpret the model. Since neural 

networks are a parallel and distributed system, it is not possible to interpret the 

weights of the optimized model conveniently. Further, it is also possible to obtain 
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two different models that have similar performance but whose weights may be 

completely different. An alternative to this is to perturb the input and evaluate the 

performance of the model. This approach was inspired by early experiments that 

were done to determine the principal component involved in carrying genetic 

information from the complex mixture of cell components [17, 18]. The approach 

helps provide insight into the system being modeled, assists in evaluating the 

relative importance of the features that are part of the input space, and derives 

the principal features among them. This approach, called calliper randomization, 

was first proposed by the author and applied to the analysis of biological 

sequences[19]. The approach has been extended to the analysis of 

microarrays[20], and can be conveniently applied to any learning model. The 

algorithm is briefly described below. 

Algorithm 1 Calliper randomization algorithm  

procedure CALLIPER RANDOMIZATION 

model ← ANNmodel 
calliperWindow ← required windowSize 

TestDataTmp ← TestData 
numFeatures ← number of features in one TestDataTmp 
For i ← 1 to (numFeatures -calliperWindow) step 1 

   predictTest ← predict(model, TestDataTmp) 

   calliperError ← determineClassificationError(predictTest) 

   TestDataTmp ← TestData 
For j ← i to (i +calliperWindow) step 1 

TestDataTmp[j] ← perturbed data 

end For j 
end For i 

 

The calliper plot of perturbed positions versus the calliperError provides a view 

of the features that are deemed important in imparting knowledge to the neural 
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network. Those features, which, when perturbed, hamper the performance of the 

model, in this case by miss-classifying the samples above a particular threshold, 

(percentage or area under the curve (AUC) of the ROC curve) can be extracted for 

further functional analysis. Calliper plot for the example of AC and SCC is shown in 

(Fig. 5). 

Features which when perturbed, contribute to miss-classification the most are 

considered important in imparting knowledge to the network. In figure 5, the 

features that affect the prediction ability of the classifier by greater than 40% are 

depicted in larger dark circles. Since in this case a window of features is perturbed, 

all the features contained in the window are considered important and may be 

subject to further downstream analysis. Because the expression of genes is 

affected by other genes, it is possible to identify these by perturbing different 

subsets of features and evaluating the performance of the model. 

Another important notion in using the calliper randomization is that of directed 

callipers —these are features that are known a priori to be important for proper 

functioning of the system under study. In such cases callipers may be placed at 

specific positions to include known or hypothesized features and those may be 

selectively perturbed. An example is the Shine/Dalgarno sequences and initiation 

codons which are known to be important for translation initiation, when building 

models to identify ribosome binding sites[21]. Selectively perturbing these would 

hamper the prediction capability of the model, indicating that these are key 

features of the ribosome binding site. This notion of directed callipers is not limited 



Calliper randomization 11 

to sequence data, and can be extended any type of data for which prior knowledge 

about features may be available. 

3 Summary 

Understanding biological systems in terms of the individual components and their 

function is a complex endeavor, even when a plethora of data is available about 

the system under study. Using an ANN based modeling approach, it is possible to 

capture the behavior of the system. However, despite ANN models being able to 

capture the behavior of the system, they are "Black-box" models and seem 

removed from being interpretable. This can be circumvented by using a biologically 

inspired perturbation method called calliper randomization. This method helps 

delineate the principal features from the complex data sets and may be key 

functional players biologically. These may be considered computationally derived 

hypotheses that can then be validated experimentally. 
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Figure Legends 

Figure 1. A three layered neural network with ten input neurons, five hidden 

neurons and one output neuron 

Figure 2. Multiple comparison of expression values for a subset of probes that 

show significant difference between SCC and AC. The ordinate represents probe 

ids for SCC and AC that were compared. 

Figure 3. Error profile for the training and test data sets. Only the training data sets 

is used to change the weights of the neural network 

Figure 4. ROC curves depicting the performance of the ANN model for a perfect 

(left) and imperfect (classifier) right. 

Figure 5.  Calliper error as obtained using the neural network model for classifying 

AC and SCC 
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