
Chapter 8

Analysis of Isoform Expression from Splicing
Array Using Multiple Comparisons

T. Murlidharan Nair

Abstract

There is a high prevalence of alternatively spliced genes (isoforms) in the human genome. Studies toward
understanding aberrantly spliced genes and their association with diseases have lead researchers to profile
the expression of alternatively spliced products. High-throughput profiling of isoforms has been done
using microarray technology. Expression of isoforms reflects regulation both at transcriptional and
posttranscriptional levels. This chapter details the methods to perform exhaustive comparison of isoforms
using the R statistical framework.
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1. Introduction

Alternative pre-mRNA splicing (AS) responsible for generating
multiple transcripts from a single gene plays a central role in
generating complex proteomes (1). It is estimated that more
than 90% of the human genes have alternatively spliced products.
Over the years, studies directed toward understanding alternative
splicing using computational approaches have gained increased
attention (2–5). Several studies have used microarray technology
to quantify isoform expression levels either directly or indirectly
(6–9). Quantifying isoform expression levels has the advantage
in that it reflects the integrated outcome of the regulations at
transcriptional and posttranscriptional levels. There is evidence
that points to the functional integration of processes involved in
transcription and RNA processing (10).

There are several disparate microarray platforms that have
been used for expression analysis (11, 12); however, most plat-
forms are not designed to specifically query isoforms. Multiplex
mRNA isoform detection assays known as RASAL or DASL
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(RNA/DNA-mediated annealing, selection, and ligation),
coupled with microarray were designed to uniquely profile
mRNA isoforms in a high-throughput manner (13, 14). This
chapter provides the computational methods for analyzing and
extracting biological information from isoform expression data.
For the purpose of this chapter, we have used data from Illumina
BeadArray technology; however, the method described here can
be easily extended to data collected from other high-throughput
technologies, with some preprocessing of the data.

2. Materials

2.1. Hardware

and Software

Requirements

The computational protocol that is described here requires the
following:

R is an open-source statistical computing environment
available under the GNU Public License for different platforms
(Windows/Linux/Unix/Mac) (15). R was developed by Robert
Gentleman and Ross Ihaka. It has quickly become the language
of choice for most large-scale computational analyses in Biostatis-
tics and Bioinformatics. R has a command line interface where R
commands are typed in. R has a rich library of add-on packages
that has been developed for specific types of analyses. All the
packages are available free to the user.

R can be downloaded from ref. 16. Binary versions are easy
and straightforward to install. The analysis described in this
chapter makes use of the multcomp package to carry out
multiple-hypothesis testing (17). The multcomp may be installed
using the R interface. It can be done by clicking on “packages”
from the main menu and choosing “Install package(s).” Choose a
mirror site closest to you geographically, and then choose the
required package, in this case “multcomp”, to be installed.

2.2. Dataset Themethods described here use the data generated using Illumina
BeadArray (6, 18). For details of how the data was generated,
the reader may refer to the original article by Li et al. (6). While
there are several technologies that have been used for gathering
information on expression of isoforms, the methods described
in this chapter are not specific to any particular type of data set.
However, some preprocessing of the data may be required so as to
map the data obtained using other technologies to the one
obtained using the BeadArray. For instance, the Affymetrix
approach uses multiple probes to query a transcript; thus, care
should be taken to combine the expression values from probes
that query the same exon. This can then be used to compare
expression levels of different exons within the same transcript
using the method described here.
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2.2.1. Isoform Expression

Data

The isoform expression data is read from a comma-separated value
file (csv): each column represents a biological sample (cell line/
tissue) and each row represents a different isoform or splicing
event (see Table 1).

3. Methods

3.1. Experimental

Design and

Normalization

When profiling expression of isoforms/splicing events from
biological samples, it is important to ensure that one takes the
necessary steps to process the samples in batches and have
biological and technical replicates. Careful attention should be
paid when designing probes to minimize interference with hybri-
dization due to secondary structure. Expression data from RASL/
DASL assay used here has high specificity and sensitivity in
querying isoform expression. The ligation step contributes to the
specificity and the PCR step significantly enhances the sensitivity
(6) in the assay. When extracting isoform expression information
from other technologies like Affymetrix that use multiple probes,
appropriate care should be taken to assign expression values to
isoforms/splicing events (see Note 1) (19, 20).

Microarray data needs to be normalized before different data
sets can be cross compared. Normalization enhances meaningful
data characteristics and accounts for systematic differences across
data sets. There are several methods that may be used to normalize
expression data (21–23). The data used here was normalized
against a synthetic average using locally weighted polynomial
regression (LOWESS) (24). LOWESS uses a polynomial of
degree 1 or 2, thus avoiding over-fitting. The procedure divides
the data domain into several windows and uses the polynomial
only to approximate over a narrow interval. Since normalization is
not a one-size-fits-all solution, the user should decide, based on
the data they have, which method is most suitable for their data.
It is assumed here that data has been normalized.

3.2. Multiple

Comparisons of

Isoform Expression

In analyzing isoform expression data, we are confronted with the
problem of testing the differences in expression between many
means. This can be conveniently tackled using multiple com-
parisons. Differential analysis of isoform expression involves all
possible comparisons and can be conveniently done using the R
multcomp package (25). It is noteworthy to mention that such
comparisons are compute intensive and it is advisable to use
parallel processing (see Note 2). The output is in the form of
confidence intervals, significant comparisons are those that do
not intersect the zero line. We demonstrate the exhaustive com-
parisons using the data given in Table 1. R-code given in Table 2
can be used to carry out the analysis.
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Table 2
R-code for carrying out the exhaustive comparisons using the multcomp package

1 library(mvtnorm)

2 library(multcomp)

3 par(mfrow ¼ c(1,1),cex ¼ 0.7, mai ¼ c(3,2,1,2), ask ¼ T)

4 complete.data < �read.csv(“isoformSubset.csv”,header ¼ T)

5 lgth < �length(complete.data[1,])-1

6 complete.data.mat < �as.matrix(complete.data[,1:lgth + 1])

7 cell.line < �0

8 complete.data.frame < �as.data.frame(complete.data)

9 filename < �as.vector(complete.data.frame$Isoform)

10 cell.line < �colnames(complete.data.mat)

11 cell.line < �as.factor(substr(cell.line, 1,c(5,5,8,8,5,5,5,7,7,7)))

12 number.rows < �nrow(complete.data.mat)

13 i < �0

14 Expression < �0

15 mult.comp < �0

16 for(i in 1:number.rows)

17 {

18 cat(“Now computing::- > ”, filename[i],“\n”)

19 for(j in 1:(lgth)){

20 Expression[j] < �complete.data.mat[i,j]

21 }

22 Expression < �as.numeric(Expression)

23 isoform.expression < �data.frame(cell.line,Expression)

24 isoform.expression$cell.line < �factor(isoform.expression$cell.line)

25 amod < �aov(Expression ~ cell.line, data ¼ isoform.expression)

26 mult.comp < �glht(amod,linfct ¼ mcp(cell.line ¼ “Tukey”))

27 conf.int < �confint(mult.comp,level ¼ 0.99)

28 plot(conf.int, main ¼ filename[i],xlab ¼ “99% Confidence interval”)

29 p.value < �summary(mult.comp)$test$pvalues

30 out.data.mat < �data.frame(conf.int$confint[,1:3],p.value)

31 filename.csv < �paste(filename[i], “csv”,sep ¼ “.”)

32 write.table(out.data.mat, file ¼ filename.csv, sep ¼ “,”, qmethod ¼ “double”, col.name ¼ NA)

33 rm(amod,mult.comp,conf.int,p.value,out.data.mat,filename.csv)

34 }
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The preceding code may be written using any ASCII editor and
saved as an R file. Lines 1 and 2 ensure that the two libraries are
loaded. Line 3 sets the parameter for plotting. You may change
these according to your requirements. Reading the isoform expres-
sion data is achieved in line 4. It is assumed here that the name of
the file is “isoformSubset.csv.” You should substitute your isoform
expression data file name. Line 9 uses the isoform name from
the expression data to create a file name to store the results of the
analysis for a particular isoform. Line 11 creates a factor, in this case
using the cell line names from the expression data. The substr
function in line 11 is used to eliminate any additional differentiators
that R introduces when the file header contains duplicate names.
You may need to make changes to the substr function to reflect the
size of the headers you have used. Lines 25 through 27 help achieve
the multiple comparison. Confidence level used in computing the
confidence intervals is set to 0.99 in line 27 to ensure low probabil-
ity of type I error. Line 32writes the output of each comparison to a
file that has the isoform name as its filename. Table 3 shows a typical
output that is written to the file created in line 32. In the interest of
brevity, data contained in only one output file is shown.

3.3. Interpretation

and Further

Processing

of the Output

The plots obtained from execution of line 28 are shown in Fig. 1.
These plots are the graphical representation of the confidence
intervals for the comparisons. The significant comparisons are
those that do not intersect the zero line. Only comparisons for
four of the isoforms are shown. The plots clearly show that there
is a significant difference in expression of the isoform ABCG1-
0490 between HCE.7 and DU145.E, and between MDA.MB.4
and DU145.E. The isoform ABCG1-0495 does not show a sig-
nificant difference in expression between HCE.7 and DU145.E,
and between MDA.MB.4 and DU145.E. Further, the isoform
ABCG1-0494 does not show any significant difference in expres-
sion in any of the comparisons, as in all cases we see an intersection
of the zero line.

Table 3
Output of the comparison of isoform ABCG1-0490

Estimate lwr upr p-Value

HCE.7-DU145.E 228.88653 44.68726 413.0858 0.003281

MDA.MB.4-DU145.E 344.06312 159.8638 528.2624 0.000266

PC3.E-DU145.E 4.9996982 �159.753 169.7525 0.998626

MDA.MB.4-HCE.7 115.17659 �86.6036 316.9568 0.10403

PC3.E-HCE.7 �223.8868 �408.086 �39.6876 0.003638

PC3.E-MDA.MB.4 �339.0634 �523.263 �154.864 0.000376
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The subset of data used here was part of a study to identify
differential expression of isoforms in prostate cancer cell lines and
nonprostate cancer cell lines (6, 18). The data generated as a result
of this study consisted of isoform expression from cell lines.
The cell lines for which expression data were collected included
five prostate cancer cell lines, viz., LNCap, LAPC4, RWPE2, PC3,
and DU145, and twelve nonprostate cancer cell lines, viz., colon
cancer line (HT29, SW480, HCT116, LS174, Fet), breast cancer
line (MCF7, MDA.MB-468), kidney cancer line (Caki-2), lung
epidumoid carcinoma line (CALU1), and esophageal cancer lines
(HCE-7, EC17 and TE3). Isoforms that exhibit differential
expression between two classes of samples can be delineated
from the output generated using multiple comparisons. Each
isoform is given a unit score for every significant difference it
showed in a comparison. The sum of the scores can be used to
rank the isoform. In the example that we are using here, the
isoforms ABCG1-0490 and ABCG1-0491 each have a sore of 4.

Fig. 1. Multiple comparisons on expression level of four different isoforms of the gene ABCG1. Comparisons that show
significant difference in expression level are the ones that do not intersect the zero line.
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Even though the comparison between HCE.7 and MDA.MB.4 is
significant, it is not considered, as both are nonprostate cancer cell
lines. Isoform ABCG1-0495 has a score of 3, while ABCG1-0494
has a score of 0. Assignment of scores may be decided depending
upon the question you are trying to answer, that is, whether you
are doing a within-class comparison or a between-class compari-
son. Top ranking isoforms may be used as features for class sepa-
ration or may be further studied to understand their potential to
serve as biomarkers. Further, isoform levels may also reflect on the
different levels of control that may be teased out in a problem-
specific manner (see Note 3).

4. Notes

1. Processing of expression data from disparate microarrays.
Not all microarrays permit the direct measurement of iso-
form expression. The data used in this chapter was from
specially designed arrays that queried for splicing events.
Isoform expression may be derived from Affymetrix that
uses multiple probes. However, this would require deducing
isoform information based on the probes that query the gene
of interest. Care must be taken when such preprocessing is
done and would require careful annotation of the probes to
reflect the isoform being queried.

2. Computational capacity issues. Multiple comparisons are
compute intensive, especially when one handles large data-
sets. It is advisable to use a cluster and process the data in
parallel. The R/Parallel package helps to conveniently
achieve this (26). In addition to this, computing efficiency
may be improved by processing subsets of data and avoiding
redundant comparisons.

3. Deconvoluting controls at levels of transcription and splicing.
Controls of mRNA expression may be regulated at levels of
transcription, RNA stability, and splicing. Depending on the
type of data collected, it may be possible to tease this infor-
mation from the data. For instance,multiple isoforms that are
similarly elevated or depressed would indicate coordinated
changes in transcription and/or RNA stability (6). The tran-
script change may be computed as the sum of the weighted
fold change of the isoforms involved. The splicing change
may be computed as the difference in fold change of the two
isoforms. Thus, for isoforms that are similarly up- or down-
regulated, the splicing change would be close to zero. These
computations are data dependent and the reader is referred to
an earlier work by the author for details of a specific case (6).
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