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a b s t r a c t

Alternative splicing of human pre-mRNA is a very common phenomenon and is a major contributor
to proteome diversity. mRNA isoforms that arise as a result of alternative splicing also provide a more
complete picture of the transcriptome as they reflect the additional processing a pre-mRNA undergoes
before being translated into a functional product. It has been reported that molecular alterations of
cells can occur as a result of the differential expression of mRNA isoforms, resulting in cancerous or
normal tissue. Quantification of mRNA isoforms can thus be used as a better indicator in distinguishing
a normal tissue from a cancerous tissue. In our earlier study we had used mRNA isoforms expression
to identify biomarkers for prostate cancer (Li et. al, 2006. Cancer Res. 66 (8) 4079–4088). Here we have
used statistical methods of multiple comparison and have developed a simple scoring scheme to extract
isoform features. Further, we have rigorously analyzed the isoform expression data to understand the
variability and heterogeneity associated with the expression levels between (i) prostate cancer cell lines

and non-prostate cancer cell lines and (ii) normal prostate tissue and prostate cancer tissue. We found
that there were several isoforms that showed significant difference in expression within the same class.
We were also able to successfully identify isoforms with similar changes in expression levels, that when
used as features for classification was able to provide robust class separation. The features selected using
the multiple comparison methods had subsets that were common and disparate with those that were
selected using statistical t-tests. This reveals the importance of selecting features using a combination of

.
complementary methods

. Introduction

Cancer is a highly heterogeneous disease and one of the leading
auses of death in both men and women alike. Over the years signif-
cant progress has been made in battling other diseases like heart
isease and cerebrovascular disease, which has resulted in declined
ortality rates. Death rate due to cancer has not changed sig-

ificantly (http://www.cancer.org). Mortality rate due to prostate
ancer, which has been the second leading cause of mortality
n men have decreased, as a result of early detection based on
rostate-specific antigen (PSA) screening (Crawford et al., 2001)
nd monitoring by digital rectal exam (Ilic et al., 2006). Elevated
SA levels are seen in another condition called benign prostate

yperplasia (BPH) (Schroder, 2005), thus making needle biopsy the
nly definitive diagnosis for prostate cancer. The heterogeneous
ature of the disease with disparate molecular alterations makes
arly diagnosis a challenge.
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Molecular alterations associated with prostate carcinomas
range from epigenetic changes and genetic polymorphisms to alter-
native splicing and post-translational processes (Reynolds, 2008).
Distinguishing carcinomas based on molecular alterations would
involve the ability to accurately determine the molecular pic-
ture of the cell type. One approach to determining this is to use
high-throughput technology using microarrays (Ramaswamy et al.,
2001; Fournier et al., 2006; Ginestier et al., 2006) for profiling the
levels of thousands of mRNA expressed in the cell in one single
experiment. Most expression studies are based on measuring the
levels of the unprocessed mRNA transcript. However, it is now a
known fact that more than 60% of the human genes are alternatively
spliced (Croft et al., 2000; Lander et al., 2001; Modrek et al., 2001).
Alternatively spliced forms are capable of giving rise to unique
proteins which contributes to the proteome diversity (Maniatis
and Tasic, 2002). Conservation of sequence in alternative spliced
forms is indicative of their functional importance (Chen and Zheng,
2008). Measuring the unprocessed mRNA transcript only provides

an incomplete picture of the transcriptome. A probe detecting the
level of the unprocessed transcript does not provide any informa-
tion about the exons that was not queried specifically by it, even
though it may be part of the same transcript. When non-specific
probes are used, one often assumes that all exons that are part

http://www.sciencedirect.com/science/journal/14769271
http://www.elsevier.com/locate/compbiolchem
http://www.cancer.org/
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f that pre-mRNA are equally expressed. This however is not the
ase as most pre-mRNAs undergo post-transcriptional processing.
n an earlier study we profiled the expression of ∼1500 mRNA iso-
orms from a panel of genes that have been previously associated
ith prostate and other cancers (Li et al., 2006). An mRNA iso-

orm detection system known as the DASL assay (cDNA-mediated
nnealing, selection, and ligation) coupled with a universal array on
ber optic bundles was used to profile mRNA isoforms in a high-
hroughput fashion. The method has the advantage of handling
artially degraded biological samples especially those derived from
issue blocks that have been formalin-fixed and paraffin embed-
ed (Fan et al., 2004). One major challenge in analyzing microarray
ata especially from sources that are potentially heterogeneous

s to identify with a reasonable certainty universal signatures of
ifferential expression between two classes of samples being ana-

yzed. The analysis of isoform expression data did reveal subset
f isoforms that were uniquely expressed in prostate cancer cell
ines and tissue but not in others. In this paper we rigorously ana-
yzed the expression data to understand in detail the changes in
soform expression between prostate and non-prostate cancer cell
ines, and between normal and prostate tumor tissue. We have
sed a simple scoring scheme using multiple comparisons to rank

soforms as most distinguishing between the two classes being
ompared. We also analyzed the changes in isoform expression

evels within the same class with a view to illustrate the hetero-
eneity associated with the prostate carcinoma samples used in
he study. Further, we also compared the ranking of all the features
sing the current method to those obtained using simple t-tests.
he results revealed common and disparate features, underlining

ig. 1. Multiple comparison of the expression level of one of the mRNA isoforms of ATP-b
tudied. Only comparisons that showed a significant difference in expression level are plo
Chemistry 33 (2009) 421–428

the importance of using complementary methods when selecting
features.

2. Materials and methods

2.1. Data

The isoform expression data used in this study were obtained
from earlier work by Li et al. (2006). The data consisted of iso-
form expression from cell lines and prostate tumor tissue. The
cell lines for which expression data were collected included five
prostate cancer cell lines viz. LNCap, LAPC4, RWPE2, PC3 and
DU145, and twelve non-prostate cancer cell lines viz. colon can-
cer line (HT29, SW480, HCT116, LS174, Fet), breast cancer line
(MCF7, MDA-MB-468), kidney cancer line (Caki-2), lung epidu-
moid carcinoma line (CALU1) and esophageal cancer lines (HCE-7,
EC17 and TE3). The prostate tumor tissue from which expression
data were collected consisted of formalin-fixed and paraffin-
embedded tissue. The set contained 10 normal and 12 tumor
samples.

2.2. Principal-component analysis and biplot-PCA

The structure of correlations within the mRNA isoform expres-

sion data was characterized using principal-component analysis
and biplot-PCA. Biplot was used to represent the results of PCA
(Gabriel, 1971). Biplot graphically displays a matrix M = (mij) of n
rows and m columns, using row and column markers. The inner
product of the markers represents the i, jth element of M. The rows

inding cassette, sub-family C, member 4 (ABCC4-2007) gene between the cell lines
tted. Similar exhaustive comparisons were done for all 1532 isoforms studied.
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Table 1
Non-prostate cancer cell line vs. non-prostate cancer cell line. Percentage of isoforms that were found to be differentially expressed when different non-prostate cancer cell
lines were compared with each other (within-class comparison).

Caki-2 Calu1 EC-17 Fet HCE-7 HCT116-2 HT29 LS174 MCF7 MDA-MB-468 SW480

Calu1 37.08
EC-17 37.14 30.29
Fet 39.10 37.21 35.44
HCE-7 37.01 28.59 34.66 32.90
HCT116-2 36.81 32.38 32.64 30.55 29.44
HT29 43.86 40.08 39.62 36.10 37.27 38.64
LS174 33.81 34.20 35.44 35.25 33.09 22.98 37.47
MCF7 40.60 38.97 40.93 35.77 36.68 33
MDA-MB-468 36.42 37.60 36.75 38.32 35.25 33
SW480 43.15 39.75 38.45 40.34 37.99 36
TE3 37.99 37.27 34.14 37.40 34.20 35

Table 2a
Prostate cancer cell line vs. non-prostate cancer cell line. Percentage of isoforms
that were found to be differentially expressed when prostate cancer cell lines were
compared with non-prostate cancer cell lines (between-class comparisons).

DU145-E LAPC4-E LNCaP-E PC3-E RWPE1-E RWPE2-E

Caki-2 56.20 59.79 61.10 56.72 56.79 59.07
Calu1 54.11 58.09 57.05 54.18 54.31 54.83
EC-17 53.46 56.98 55.87 51.83 52.74 53.26
Fet 54.24 52.94 54.37 54.96 54.63 53.66
HCE-7 50.46 55.16 54.44 50.00 51.57 51.96
HCT116-2 53.00 54.18 53.85 53.26 51.89 52.35
HT29 50.39 50.33 53.00 51.04 49.35 50.72
LS174 51.50 51.63 54.31 52.15 51.17 51.76
MCF7 54.44 53.52 54.05 55.29 53.98 54.83
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MDA-MB-468 55.16 55.68 57.51 51.96 53.98 55.22
SW480 51.44 53.66 55.03 53.46 52.74 51.70
TE3 52.09 52.28 55.03 50.59 52.15 50.91

or the splicing array matrix correspond to the different isoforms
f the genes being analyzed and the columns are the different
ell lines or tissue samples. The row markers corresponding to
he isoforms (not given in the figure) and the arrow or column

arkers represent the cell lines or tissue samples. The lengths
f the arrows correspond to the variances among the different
ell lines or tissue samples and the angle represents their corre-
ation.

.3. Multiple comparison scoring scheme

We used the multicomp package from the R statistical envi-
onment for our multiple comparisons (http://www.r-project.org).
ukey’s method was used in our analysis. All possible comparisons
ithin and between the classes were carried out. Making inferences

bout the differences between two population means by either
sing interval estimation or hypothesis testing approach is rather
traightforward. However, when the comparison involves several
eans, approaches involving ANOVA F-test, only provides infor-

ation whether the two means, being compared were significantly

ifferent. They do not give information on which means differ from
hich other means (Hochberg and Tamhane, 1987; Westfall, 1997).
ultiple comparison procedure employed here circumvents this

able 2b
rostate cancer cell line vs. prostate cancer cell line. Percentage of isoforms that
ere found to be differentially expressed when different prostate cancer cell lines
ere compared with each other (within-class comparison).

DU145-E LAPC4-E LNCaP-E PC3-E RWPE1-E

LAPC4-E 43.60
LNCaP-E 44.26 39.88
PC3-E 38.25 44.19 45.37
RWPE1-E 43.02 46.93 47.45 41.97
RWPE2-E 39.88 47.00 44.71 41.45 22.45
.36 40.14 29.77

.22 40.21 34.60 36.16

.42 38.12 30.29 35.64 38.71

.05 32.64 33.55 35.18 33.62 32.77

problem and provides detailed information about the differences
in means. Exhaustive comparison of isoform expression levels was
carried out within and between each class of samples. Each isoform
was given a unit score for every significant difference it showed in
a between-class or within class comparison. Sum of these scores
was then used to rank the isoforms. A subset of top ranking iso-
forms was used as features for class separation using a clustering
algorithm (Eisen et al., 1998).

3. Results and discussion

3.1. Multiple comparison of prostate and non-prostate cancer cell
lines

We carried out two sets of exhaustive comparisons. One
involved the comparison between prostate and non-prostate can-
cer cell lines which we term as the between class comparison.
The other comparison that we call within class comparison was
done by comparing prostate cancer cell lines with prostate can-
cer cell lines and by comparing non-prostate cancer cell lines with
non-prostate cell lines. Fig. 1 shows the comparison between dif-
ferent cell lines for one of the isoforms. Significant differences in
expression levels are those that did not intersect the zero line.
Only the cell lines that showed a significant difference in iso-
form expression levels have been plotted in the figure. In the
interest of brevity, comparisons for only one isoform are shown.
Table 1 shows the percentage of isoforms that showed differen-
tial expression between prostate cancer and non-prostate cancer
cell lines. On average, about 53% of the isoforms showed signifi-
cant differential expression between the two classes. With a view
to understand heterogeneity and sample to sample variation, we
analyzed the isoforms for differential expression within the same
cell line class. Tables 2a and 2b give the percentage of isoforms
that were differentially expressed within the same class. On aver-
age, about 35% of the isoforms were differentially expressed within
non-prostate cancer cell lines and about 39% of the isoforms were
differentially expressed within prostate cancer cell lines. Using the
scoring scheme discussed earlier we selected a subset of one hun-
dred top ranking isoforms as features and clustered the expression
data for all the cell lines by hierarchical clustering. Fig. 2 gives
the heat map and the results of clustering using the selected fea-
tures. We were able to successfully separate the two classes and
the clear difference in expression profiles is evident in the heat
map diagram. The distinct differences in the expression levels of
the isoforms associated with the two different classes is further
emphasized when the features selected are subjected to biplot-

principal-component-analysis (Gabriel, 1971). The analysis takes
into account both negative and positive correlations in expression
levels and the results are presented as a biplot graph in Fig. 3.
The length of the arrow reflects the variance in the data for each
sample. The variance in the expression seems to be comparable

http://www.r-project.org/
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of clustering the samples using the features extracted is shown in
Fig. 5. It is noteworthy to point out that while we were able to suc-
cessfully classify most of the samples, the tumor sample with the
least tumor content (40%) was clustered among the normal sam-
ig. 2. Hierarchical clustering of the prostate cancer and non-prostate cancer cell
ines using the top 100 features that were found to be most discriminatory based on
he multiple comparison analysis ranking method.

n most cases. The biplot representation also displays the relation-
hip among the samples. The angles between positively correlated

ectors approach 0 degrees while those with negative correlations
pproach 180 degrees. Samples with no correlation are orthogonal.
he samples that belong to the same class have distinctly similar
rojections of their vectors and the two classes show clear class
eparation.
Chemistry 33 (2009) 421–428

3.2. Multiple comparison of isoform expression in prostate cancer
tissue and normal tissue

We also carried out a similar exhaustive comparison for isoform
expression data in normal and prostate cancer tissues. As we had
done in the case of the cell line data, we carried out two sets of com-
parisons; in one we compared the expression of isoforms in samples
belonging to two different classes which we term as between-class
comparison, in the other we compared expression of isoforms in
samples from the same class with each other in a within-class com-
parison. Fig. 4 shows the results of the multiple comparisons for one
of the isoforms that showed significant difference in expression in
the samples compared. Table 3 shows the percentage of isoforms
that showed differential expression between tumor tissue and the
normal tissue. The data in the table clearly shows the high variabil-
ity in the number of isoforms that showed differential expression.
The data should also be viewed keeping in mind the variability in
the tumor content of the different samples that were analyzed. The
tumor content varied from 40% to 95%. In order to understand the
heterogeneity associated with the molecular alteration associated
with prostate cancer, we analyzed the differential expression of
isoforms within the different normal prostate tissue samples and
within the prostate tumor tissue samples. Tables 4a and 4b show
the results for the comparison within tumor and normal samples.
The results clearly show that even in a within-class comparison
there are molecular alterations that are distinct. The variations in
the normal samples are much less as compared to the variations in
the tumor samples. This clearly points to the heterogeneity asso-
ciated with prostate tumors and the challenge in defining a single
marker in identifying them. Even in the light of this variation, we
were able to extract a subset of top ranking isoforms that showed
significant differential expression in a majority of cases, and suc-
cessfully use them as features for hierarchical clustering. The result
Fig. 3. Biplot showing the overall structure of the difference in isoform expression
between prostate and non-prostate cancer lines. The length of each eigenvector is
proportional to the variance in the expression for that cell line. The angle between
eigenvectors represents correlations among different cell lines.
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Fig. 4. Multiple comparison of the expression level of one of the mRNA isoforms of ATP-binding cassette, sub-family C, member 4 (ABCC4-2007) gene between prostate
cancer tissue and normal prostate tissue. Only comparisons that showed a significant difference in expression levels between cancer tissue and normal prostate tissue are
plotted. Similar exhaustive comparisons were done for all 1532 isoforms studied.

Table 3
Tumor tissue vs. normal tissue. Percentage of isoforms that were found to be differentially expressed when prostate tumor tissues were compared with normal prostate
tissues (between-class comparison). The percentage of tumor content is indicated in the bracket.

T(40%) T(50%)a T(50%)b T(60%) T(65%) T(70%)a T(70%)b T(70%)c T(80%)a T(80%)b T(90%) T(95%)

N(0%)a 10.18 16.97 10.05 13.51 19.52 28.13 17.30 24.02 8.49 12.79 7.90 12.27
N(0%)b 4.50 10.51 9.14 8.16 19.65 26.57 15.60 25.39 10.90 9.46 11.16 15.60
N(0%)c 14.36 19.78 10.12 15.73 22.91 32.38 20.76 29.18 11.42 15.08 13.84 16.64
N(0%)d 6.27 15.01 5.94 8.75 19.84 28.52 14.69 24.15 10.31 8.68 9.99 14.43
N(0%)e 6.66 11.81 5.74 4.90 19.71 27.55 15.99 24.80 10.25 7.44 10.97 13.32
N(0%)f 6.01 12.47 9.33 10.51 22.72 27.68 17.49 27.35 13.45 9.66 12.01 16.25
N(0%)g 4.96 12.21 7.44 7.11 19.91 24.80 14.30 24.09 10.18 6.98 10.84 14.69
N(0%)h 6.72 9.66 8.94 6.92 19.97 25.59 16.64 24.48 12.99 9.14 12.99 15.93
N(0%)i 14.03 22.91 17.43 19.39 27.74 35.31 23.63 30.81 22.00 17.95 21.28 27.22
N(0%)j 9.40 13.58 12.60 13.38 22.32 29.11 18.02 27.81 13.84 12.73 14.49 18.80

Table 4a
Tumor tissue vs. tumor tissue. Percentage of isoforms that were found to be differentially expressed when different prostate tumor tissues were compared with each other
(within-class comparison). The percentage of tumor content is indicated in the bracket.

T(40%) T(50%)b T(50%)a T(60%) T(65%) T(70%)a T(70%)b T(70%)c T(80%)b T(80%)a T(90%)

T(50%)b 7.64
T(50%)a 13.05 13.12
T(60%) 9.92 6.59 9.66
T(65%) 20.43 18.73 17.62 17.17
T(70%)a 28.59 27.02 24.41 22.26 21.48
T(70%)b 16.12 15.27 15.86 13.51 13.77 20.37
T(70%)c 24.87 23.43 24.09 25.00 19.91 25.59 18.99
T(80%)b 9.79 5.61 14.36 5.87 18.54 24.48 14.69 26.17
T(80%)a 13.19 9.14 16.64 11.29 16.19 23.50 13.97 25.33 9.92
T(90%) 12.27 10.44 16.97 11.62 15.54 22.85 15.21 22.32 9.20 7.77
T(95%) 15.34 12.86 18.47 13.71 15.73 20.63 14.75 23.04 12.34 10.12 7.44
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Table 4b
Normal tissue vs. normal tissue. Percentage of isoforms that were found to be differentially expressed when different normal prostate tissues were compared with each other
(within-class comparison). Percentage of tumor content is indicated in the bracket.

N(0%)a N(0%)b N(0%)c N(0%)d N(0%)e N(0%)f N(0%)g N(0%)h N(0%)i

N(0%)b 8.42
N(0%)c 10.25 10.97
N(0%)d 8.29 5.81 7.57
N(0%)e 8.16 4.57 9.92 4.63
N(0%)f 10.18 3.46 11.81 5.29 6.14
N(0%)g 10.57 2.35 14.75 5.81
N(0%)h 13.12 6.33 16.19 9.53
N(0%)i 19.45 15.93 20.50 13.51
N(0%)j 11.62 3.92 14.03 9.33

Fig. 5. Hierarchical clustering of prostate cancer tissue and normal tissue using the
top 100 isoform features that were found to be most discriminatory based on the
multiple comparison analysis ranking method.
5.48 4.83
6.72 6.66 5.29
17.75 15.80 14.03 18.28
9.33 5.81 7.57 10.64 20.37

ples. To further investigate the misclassification of this sample, all
the samples were subjected to biplot-principal-component analy-
sis (biplot-PCA). The results of the biplot-PCA are shown in Fig. 6.
The results clearly show that the samples with lower tumor content
are more similar to the normal samples. The tumor sample that was
misclassified in the hierarchical clustering, appear in the biplot to
be similar to the normal samples. It is also important to point out
that the tumor sample with 50% tumor content is at the border of
the two classes, but more close to the tumor class in the biplot.

3.3. Comparison of ranking of the features in prostate cancer cell
line vs. prostate cancer tissue

One of the obvious questions that comes to mind is regard-
ing the nature of concordance between the top ranking features.
Are the features that distinguished prostate cancer cell lines from
non-prostate cancer cell lines in agreement with those that distin-
guished the prostate cancer tissue from normal prostate tissue?
Before delving into the details of the results, it is important to

point out that the comparison of the cell lines involved comparing
prostate cancer cell lines with non-prostate cancer cell lines and
not non-cancer cell lines. The prostate cancer tissue on the other
hand was compared with normal prostate tissue and not with other

Fig. 6. Biplot showing the overall structure of the difference in isoform expression in
tumor and normal prostate tissue. The length of each eigenvector is proportional to
the variance in the expression of isoforms for that tissue sample. The angle between
eigenvectors represents correlations among different tissue samples.
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Fig. 7. Number of isoform features common at different rank intervals. Ranks w

on-prostate cancer tissues. This is an important fact to be kept in
ind as the profile of the normal prostate tissue cannot be equated
ith that of non-prostate cancer cell lines. Further, there may be
ifferences with cell lines itself when they are compared with tis-
ue samples (Sandberg and Ernberg, 2005). The results of these
omparisons should be viewed in the light of these arguments, but
evertheless it is important to understand the differences and sim-

larities. The ranked features were divided at intervals of ranks of
00 and the intersection of features contained in those intervals
as enumerated. Fig. 7 shows the number of features that were

ommon at different rank intervals. The maximum common fea-
ures were found at the intersection of first one hundred ranks of
eatures for cell lines obtained using multiple comparison methods
nd the first one hundred ranks of cell line features obtained using
-tests. Within this interval there were 66 features that were com-

on. In comparison only 31 features were common between the
rst one hundred ranks of the tumor tissue features obtained using
ultiple comparison methods and t-tests. There were less than ten

ommon features when tumor tissue features were compared with
ell line features within the same rank (1–100) using either method
f feature extraction. The results point to some of the challenges in
ariable and feature selection that are encountered when profiling
arge data sets. Obtaining variable subsets of features that are capa-
le of class separation presents a dilemma, as to which features
re more discriminatory and biologically relevant. One approach
o circumvent this is to use wrapper methods to assess subsets of
ariables according to their usefulness in class separation. Since,
he biological problem we are dealing with is inherently complex,
computational wrapper approach might not capture the interde-
endence of features for their biological functionality. These need
o be studied by experimentation.
. Conclusion

We have used multiple comparison based approach to develop a
imple scoring scheme to rigorously compare the expression levels
signed to isoforms by t-tests or multiple comparison method of ranking (MCM).

of mRNA isoforms from prostate cancer cell lines and tissue sam-
ples. The method was able to capture features that were able to
separate the classes using clustering algorithms. Exhaustive com-
parison of features within the same class in both cases (cell line
and tissue) revealed that there were several isoforms that were
differentially expressed. These comparisons revealed heterogene-
ity associated with cell lines and tissue samples. When the features
obtained using the multiple comparison method was compared
with those obtained using a t-tests, not many features were found
at the intersection of similar ranks. The two seemingly disparate
subsets however did provide robust class separation. The results
point to the fact that when analyzing large data sets for features it
is important to use complementary methods for feature extraction.
Merely achieving class separation should not be used as a sole cri-
terion for assigning biological functionality but only as an indicator
of potential functional importance of the extracted features.
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