2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)

Understanding Heterogeneity in
Pregnancy-Associated Breast Cancer

T. Murlidharan Nair
Department of Biological Sciences and Computer Science/Informatics
Indiana University South Bend
1700 Mishawaka Ave, South Bend, IN-46634 USA

Abstract- Breast cancers diagnosed during pregnancy are
generally in their advanced stages. These cancers occurring during
pregnancy and up to one year postpartum are termed as
pregnancy associated breast cancer. Recent genomic studies by
Harvell et. al. was the first large scale study that attempted to
identify molecular signatures associated with pregnancy
associated breast cancer. In this study, we have rigorously
analyzed the data with a view to identify features involved in
within-class and between-class separation. The results reveal
features that are unique between classes, as well as point to the
importance of understanding heterogeneity within the same class.
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I INTRODUCTION

Breast cancer is a heterogeneous disease and the second most
common cancer in women after skin cancer. The number of new
cases of breast cancer that are detected is 124.8 per 100,000
women each year [1]. Based on the SEER stat fact sheet, using
the 2010-2012 data, approximately 12.3 percent women will be
diagnosed with breast cancer sometime in their lifetime. Major
risk factors for the disease include age, family history, which
doubles, if a first-degree relative (mother, sister or daughter)
had the disease and high risk mutations in the BRCA1l and
BRCA2 genes. There is data to suggest an increase in breast
cancer after pregnancy [2]. The term pregnancy-associated
breast cancer (PABC) is used for cases that are diagnosed
during gestation, lactation and up to one year postpartum [2-4].

PABC cases diagnosed are typically in advanced stages and
have poor prognosis compared to women who are not pregnant
[5]. Women with PABC have higher grade tumors and are often
estrogen and progesterone negative [6, 7]. It is thus important
to understand the relationship between pregnancy and breast
cancer. Duration of exposure to endogenous hormones viz.
estrogen and progesterone produced in the ovaries have been
related to breast cancer risk. There an inverse relationship
between a women’s lifetime number of menstrual cycles, and
both pregnancy and breastfeeding [8]. Nursing for an extended
period also decreases the risk for estrogen positive and negative
breast cancers [9]. Further, there is evidence to suggest that
early full term pregnancy and multiparity have a decreased risk
in women of all ethnic groups for developing breast cancer [10,
11]. However, the risk of PABC is greatest in older first time
mothers. Metastasis is common in PABC, which then results in
higher mortality rates [2]. Breast cancer metastasis associated
with pregnancy may be attributed to the promotional effects of
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pregnancy associated hormones as well as the delay in
diagnosis [2].

Pathologically it has been noted that invasive ductal and
lobular carcinomas is the most prevalent type, while the
inflammatory types are relatively rare [12]. As mentioned
earlier, estrogen and progesterone receptors have been found to
be mostly negative in PABC [12], but this high negativity could
also be attributed to the downregulation of these receptors [13].

The relationship between breast cancer and pregnancy is
complex. Several studies have shown that prognosis of PABC
is invariant to non-pregnancy associated breast cancer (non-
PABC), if tumor size, nodal status and other established
prognostic markers are comparable[14, 15]. However, normal
gestational changes may mask masses in breast during
pregnancy, and result in a delay in diagnosis, and contribute to
poor prognosis [2, 7, 16].

More recently, the role of gestational hormones on breast
cancer have been evaluated using gene expression patterns [17].
This is one of the largest high throughput study undertaken to
understand the molecular signatures associated with PABC.
The study analyzed expression patterns from epithelial and
stromal cells in breast. The epithelial cells line the ducts and
milk producing lobules, while the stromal cells contribute to the
makeup of vasculature, basement membrane and extracellular
matrix. This allowed the study to capture differential expression
in malignant epithelial and tumor associated stromal cells. The
analysis revealed a subset of genes associated with cell cycle to
be enriched in PABC and immune-related genes enriched in
non-PABC [17]. In order to understand the complexities
associated with PABC, we have rigorously analyzed this data
for changes in expression between PABC and non-PABC
(epithelial and stromal) using multiple comparison. Further, we
have also studied the changes in expression within the same
class with a view to illustrate the heterogeneity associated with
PABC. Our analysis revealed common and disparate features in
expression patterns, as well as the importance of understanding
differential expression within the same class, when studying
complex systems.

II. MATERIALS AND METHODS
A. Data
The expression data used in this study were obtained from the
earlier work by Harvel et al (2013) [17]. The data consisted of
gene expression data profiled using HG-U133 Plus 2.0
(Affymetrix) gene chips that contained over 54,000 probe sets.
(Accession number GSE31192).
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The data set consisted of a total of 33 samples, out of which
13 were normal and 20 were tumor. Out of the 13 normal
samples, 8 were PABC and 5 were non-PABC. Out of the 20
tumor samples, 12 were PABC and 8 were non-PABC. Further,
within each of the two classes (normal and tumor), the samples
were further categorized as Er-Pos or Er-Neg and of epithelial
or stromal origin.

B.  Statistical analysis

A scoring scheme using multiple comparisons has been used
to extract features between classes. We carried out comparisons
within and between all possible categories. In each case we
established contrasts, which we tested using Tukey’s HSD
method [18-20]. All the statistical computation were done using
the multcomp package from the R statistical computing
environment  (http:/www.r-project.org) [21]. Exhaustive
comparison of expression levels was carried out within and
between each class. Each gene or probe that showed a
significant difference in either a within-class or between-class
comparison was given a unit score. The sum of the scores was
used to rank the genes in the respective comparisons. This can
be clearly understood from Figure 1, which depicts four genes,
NHP2L1, MTHFD2, EGR1, and FAM66D, with scores, one,
two three and four respectively. The scores reflect the total
number of comparisons that reveled a significant difference.
Significant comparisons are those that do not intersect the zero
line. The top ranking genes were then selected as features for
class separation using a clustering algorithm [22].
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Figure 1: Multiple comparison of four genes viz NHPLI,
MTHFD2, EGR1 and FAM66D

II1. RESULTS AND DISCUSSION

The expression levels that were captured by Harvell et. al.
[17] were categorized in several ways, each time ensuring that
statistical power is not compromised. They are discussed in the
subsections below.

A.  Epithelial vs Stromal cells

The dataset was categorized as normal or tumor cells
associated with epithelium or stroma. All of the samples were
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from invasive ductal carcinomas and majority of patients did
not have nodal involvement and had stage III disease [17].
There were a total of 13 normal samples and 20 tumor samples.
Among the 13 normal samples, 7 were stromal, and out of the
20 tumor samples, 10 were stromal. The categorization here did
not differentiate the samples as PABC and non-PABC. The goal
of this comparison was to delineate the similarities and
differences between stromal tumors, epithelial tumors as well
as between normal stroma and epithelium.

The comparison between normal and tumor cells revealed a
total of 147 features that were significantly different. All of the
147 features had a score of four, which meant that they were
significantly ~ different in all possible between-class

comparisons. These features were then used to hierarchically
under

cluster the two classes study.
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Figure 2: Hierarchical clustering using 147 features extracted by
multiple comparison. Black lines represents normal and gray
represents tumor.

The hierarchical clustering in Figure 2 clearly shows that the
features that were extracted using multiple comparison are
capable of good class separation, with only one of the tumor
samples being clustered with the normal sample. Functional
analysis using the selected features reveal that disparate sets of
genes are up or down regulated between the two classes.

We also analyzed the data to understand the difference
between tumor in the epithelium and stroma as well as the
difference between the corresponding normal samples. There
were close to 2000 feature that were differentially expressed
between the tumors in the epithelium and stroma. The features
were capable of clearly separating the two types of tumors
robustly. Figure 3 shows the hierarchical clustering of the two
tumor types based on the features selected. It is interesting to
note that there is a clear difference in the expression levels of
the genes associated with stroma and epithelium. The ones that
are upregulated in one type is down regulated in the other. This




difference points to the fact that different pathways are
disrupted in these two tumor types, and either of these
disruptions are capable of inducing tumorigenesis in the cell.

Figure 3: Hierarchical clustering of tumor in the stroma (black)
and epithelium (gray)

We were also interested in understanding the difference within
the normal samples. In order to achieve this we extracted
features that were differentially expressed in normal stoma and
normal epithelium. There were over a thousand features that
were differentially expressed.
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Figure 4: Hierarchical clustering of normal stromal (black) and
epithelium (gray) using the extracted features.

Clustering the data using these features is shown in Figure 4,
very clearly distinguishes the two types of samples. It is
noteworthy that the features that were upregulated in stroma are
down regulated in epithelium. The differences would be
expected, since stroma and epithelium are functionally

different. Stroma is part of a tissue that has a connective or
structural role, while epithelial tissues lines the cavities and
surfaces of the organ.

Interestingly enough, the intersection of features that
differentiated the within-class sample of tumor and normal
revealed that there were 224 features that were common. These
genes could have tissue specific expression and are likely to be
unrelated to tumorigenesis. This still leaves over 1700 features
that could have tumor specific expression, probably indicating
that different pathways that have been disrupted in stromal vs
epithelial tumors [23].

B. Estrogen Positive vs Estrogen negative

In this categorization the data was classified based on
hormonal receptor signatures. The distribution of the samples
based on the hormonal receptor signature was the same as that
in stroma vs epithelium. The normal samples had 6 Er-Pos
samples while in the tumor there were 12 Er-Pos samples. Here
again the categorization did not differentiate the sample as
PABC or non-PABC. We also ignored their origin, i.e. whether
they were stromal or epithelial. The goal here was to delineate
the differences and similarities based on hormonal receptor
signatures.

The comparison between normal tumor samples revealed
about 167 signatures that were capable of class separation with
one misclassification (data not shown). The classification was
similar to that, when the samples were categorized as stromal
and epithelial (Figure 2). The intersection of these features
revealed that 109 features were common between the two
categories. This also brings to light that there were about 50
features that were different. We hypothesize that these features
are specific to hormonal function. Detail functional analysis is
still work in progress.
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Figure 5: Hierarchical clustering within-class tumor ExPos
ErNeg

Analysis of the feature within-class were done to understand
the unique signatures in tumor and normal based on hormonal
regulations. Analysis of the tumor data revealed that there were
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over 500 features that were different in Er-Pos and Er-Neg
samples. These features were sufficient for class separation (see
Figure 5). These results point to the likelihood of different
underlying biological phenomena associated with Er-Pos and
Er-Neg tumors.

Features were also extracted in a within-class comparison of
the normal samples. This was done with the view to identify the
differences between the normal samples based on hormone
receptor status. The comparison revealed over 50 features that
were significantly different within the normal samples. These
features were capable of grouping the samples as Er-Pos or Er-
Neg (See Figure 6).
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Figure 6: Hierarchical clustering of the normal samples showing
class separation based on hormone receptor status.

The fact that only 50 features were significantly different
between the two classes, points to the possibility of these
features being uniquely involved in hormonal regulation. An
intersection of the 50 features that distinguished the normal
samples and the 500 features that distinguished the tumor
sample revealed only two common features. These results
reveal the possibility that tumors with differing hormonal
status, likely have completely different pathways for
transformation. The underlying pathways involved and
disrupted is still under study as part of the detailed functional
analysis.

C. PABC vs non-PABC

In this categorization the data was classified based on the
origin of tissue samples. Whether the samples were from PABC
patients or non-PABC patients. The distribution of the samples
were slightly different. Out of the 13 normal samples, 8 of them
were from PABC patients. Further, out of the 20 tumor samples,
12 were from PABC patients. The goal here was to capture
features unique to PABC. Multiple comparison were done as
described in the methods section and the features extracted.
Analysis of the features revealed 185 features that were
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significantly different between the tumor and normal samples.
When the features obtained in this comparison were intersected
with the 148 features that were obtained when the samples were
categorized as stromal or epithelial, 125 of the features were
common between them. Further, when these were intersected
with the 161 features that were extracted when the samples were
categorized as ErPos or ErNEg, 122 of the features were found
to be common. Finally, intersection between the 125 and 122
intersected features, revealed that there were 95 features
common in all. Based on the number of features that are
significantly different between the classes compared, we could
hypothesize that there are distinct features that are unique to
PABC and non-PABC. The class separation that we obtained
between the normal and tumor samples were similar to those
obtained when they were -categorized as being from
stromal/epithelial origin or Er-Pos/Er-Neg. As in those case we
did have one sample misclassified.

Within-class analysis was done in this case as well. This was
done to understand the unique features distinguishing tumors in
PABC and non-PABC. Comparison of the samples revealed
274 features that were significantly different in tumors from
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Figure 7: Hierarchical clustering of the tumor samples showing
separation between PABC and non-PABC

PABC and non-PABC. There were two samples that were
clustered separately (see Figure 7). Comparison of the normal
samples revealed that there were 327 features that were
significantly different between PABC and non-PABC. These
features were able to provide good class separation when
clustered (data not shown). Intersection of features that were
significantly different between tumor and normal, revealed that
there were only 8 features that were common. This reveals that
there is a significant difference between the molecular
signatures in PABC and non-PABC. We are currently working
on rigorously analyzing these features to mine the underlying




biology that distinguishes PABC and non-PABC. It would be
worthwhile to unravel the complex interplay between hormones
during pregnancy, and the aggressiveness of cancers, when
compared to cancers from non-pregnant women.
IV. CONCLUSION

Understanding precisely the molecular signatures associated
with cancer is a complex and challenging problem. Even when
features are identified that are capable of class separation, they
may not necessarily be biologically relevant. The true features
may be masked because biological samples are inherently
heterogeneous. The rigorous comparisons that were undertaken
here point to importance of understanding within-class
differences. Such comparisons provide a view of the
complexity in the data and the results could be used to enhance
the true difference that exist between the classes. These are
preliminary results and we are still working on the functional
analysis of the identified features.
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